MySQL vs AWS Redshift
A detailed comparison
Compare MySQL and AWS Redshift for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of MySQL and AWS Redshift so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how MySQL and AWS Redshift perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
MySQL vs AWS Redshift Breakdown
Database Model | Relational database |
Data warehouse |
Architecture | MySQL uses a client-server model with a multi-layered server design. It supports the SQL query language and offers various storage engines, such as InnoDB and MyISAM, for different use cases. MySQL can be deployed on-premises, in the cloud, or as a managed service. |
AWS Redshift utilizes a columnar storage format for fast querying and supports standard SQL. Redshift uses a distributed, shared-nothing architecture, where data is partitioned across multiple compute nodes. Each node is further divided into slices, with each slice processing a subset of data in parallel. Redshift can be deployed in a single-node or multi-node cluster, with the latter providing better performance for large datasets. |
License | GNU General Public License v2 (for the open-source Community Edition) |
Closed source |
Use Cases | Web applications, e-commerce, data warehousing, content management systems, business applications |
Business analytics, large-scale data processing, real-time dashboards, data integration, machine learning |
Scalability | Supports vertical scaling by adding more resources to a single node; horizontal scaling can be achieved through replication, sharding, and third-party tools |
Supports scaling storage and compute independently, with support for adding or removing nodes as needed |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
MySQL Overview
MySQL is an open source relational database management system that was first released in 1995. It is one of the most popular databases worldwide due to its ease of use, reliability, and performance. MySQL is widely used for web applications, online transaction processing, and data warehousing. Oracle Corporation acquired MySQL in 2010, but it remains open source software with an active community of contributors.
AWS Redshift Overview
Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. It was launched in 2012 as part of the AWS suite of products. Redshift is designed for analytic workloads and integrates with various data loading and ETL tools, as well as business intelligence and reporting tools. It uses columnar storage to optimize storage costs and improve query performance.
MySQL for Time Series Data
MySQL can be used for storing and analyzing time series data, but it will not be as efficient as a dedicated time series databases. MySQL’s flexibility and support for various indexing techniques can make it a suitable choice for small to medium sized time series datasets. For large-scale time series data workloads, with high write throughput or use cases where low latency queries are required, MySQL will tend to struggle unless highly customized.
AWS Redshift for Time Series Data
AWS Redshift can be used for time series data workloads, although Redshift is optimized for more general data warehouse use cases. Users can utilize date and time-based functions to aggregate, filter, and transform time series data. Redshift also offers ‘time-series tables’ which allow data to be stored in tables based on a fixed retention period.
MySQL Key Concepts
- Table: A collection of related data organized in rows and columns, which is the primary structure for storing data in MySQL.
- Primary Key: A unique identifier for each row in a table, used to enforce data integrity and enable efficient querying.
- Foreign Key: A column or set of columns in a table that refers to the primary key in another table, used to establish relationships between tables.
AWS Redshift Key Concepts
- Cluster: A Redshift cluster is a set of nodes, which consists of a leader node and one or more compute nodes. The leader node manages communication with client applications and coordinates query execution among compute nodes.
- Compute Node: These nodes store data and execute queries in parallel. The number of compute nodes in a cluster affects its storage capacity and query performance.
- Columnar Storage: Redshift uses a columnar storage format, which stores data in columns rather than rows. This format improves query performance and reduces storage space requirements.
- Node slices: Compute nodes are divided into slices. Each slice is allocated an equal portion of the node’s memory and disk space, where it processes a portion of the loaded data.
MySQL Architecture
MySQL is a relational database management system that uses SQL for defining and manipulating data. It follows the client-server model, where a MySQL server accepts connections from multiple clients and processes their queries. MySQL’s architecture includes a storage engine framework that allows users to choose from different storage engines, such as InnoDB, MyISAM, or Memory, to optimize the database for specific use cases.
AWS Redshift Architecture
Redshift’s architecture is based on a distributed and shared-nothing architecture. A cluster consists of a leader node and one or more compute nodes. The leader node is responsible for coordinating query execution, while compute nodes store data and execute queries in parallel. Data is stored in a columnar format, which improves query performance and reduces storage space requirements. Redshift uses Massively Parallel Processing (MPP) to distribute and execute queries across multiple nodes, allowing it to scale horizontally and provide high performance for large-scale data warehousing workloads.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
MySQL Features
ACID compliance
MySQL supports transactions and adheres to the ACID (Atomicity, Consistency, Isolation, Durability) properties, ensuring data integrity and consistency.
Scalability
MySQL can scale both vertically and horizontally, depending on the storage engine and configuration.
Replication and high availability
MySQL supports various replication techniques, including master-slave and master-master replication, to provide high availability and fault tolerance.
AWS Redshift Features
Scalability
Redshift allows you to scale your cluster up or down by adding or removing compute nodes, enabling you to adjust your storage capacity and query performance based on your needs.
Performance
Redshift’s columnar storage format and MPP architecture enable it to deliver high-performance query execution for large-scale data warehousing workloads.
Security
Redshift provides a range of security features, including encryption at rest and in transit, network isolation using Amazon Virtual Private Cloud (VPC), and integration with AWS Identity and Access Management (IAM) for access control.
MySQL Use Cases
Web applications
MySQL is a popular choice for powering web applications, content management systems, and e-commerce platforms due to its flexibility, ease of use, and performance.
Online transaction processing (OLTP)
MySQL is suitable for OLTP systems that require high concurrency, fast response times, and support for transactions.
Data warehousing
While not specifically designed for data warehousing, MySQL can be used for small to medium-sized data warehouses, leveraging its support for indexing, partitioning, and other optimization techniques.
AWS Redshift Use Cases
Data Warehousing
Redshift is designed for large-scale data warehousing workloads, providing a scalable and high-performance solution for storing and analyzing structured data.
Business Intelligence and Reporting
Redshift integrates with various BI and reporting tools, enabling organizations to gain insights from their data and make data-driven decisions.
ETL and Data Integration
Redshift supports data loading and extraction, transformation, and loading (ETL) processes, allowing you to integrate data from various sources and prepare it for analysis.
MySQL Pricing Model
MySQL is available in multiple editions with different feature sets and pricing models. The MySQL Community Edition is open source and free to use, while the MySQL Enterprise Edition includes additional features, such as advanced security, monitoring, and management tools, and requires a subscription. Pricing for the Enterprise Edition depends on the number of server instances and the level of support required.
AWS Redshift Pricing Model
Amazon Redshift offers two pricing models: On-Demand and Reserved Instances. With On-Demand pricing, you pay for the capacity you use on an hourly basis, with no long-term commitments. Reserved Instances offer the option to reserve capacity for a one- or three-year term, with a lower hourly rate compared to On-Demand pricing. In addition to these pricing models, you can also choose between different node types, which offer different amounts of storage, memory, and compute resources.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.