Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of MySQL and QuestDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how MySQL and QuestDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

MySQL vs QuestDB Breakdown


 
Database Model

Relational database

Time series database

Architecture

MySQL uses a client-server model with a multi-layered server design. It supports the SQL query language and offers various storage engines, such as InnoDB and MyISAM, for different use cases. MySQL can be deployed on-premises, in the cloud, or as a managed service.

QuestDB is designed for horizontal scaling, enabling you to distribute data and queries across multiple nodes for increased performance and availability. It can be deployed on-premises, in the cloud, or as a hybrid solution, depending on your infrastructure needs and preferences.

License

GNU General Public License v2 (for the open-source Community Edition)

Apache 2.0

Use Cases

Web applications, e-commerce, data warehousing, content management systems, business applications

Monitoring, observability, IoT, Real-time analytics, Financial services, High-frequency trading

Scalability

Supports vertical scaling by adding more resources to a single node; horizontal scaling can be achieved through replication, sharding, and third-party tools

High-performance with support for horizontal scaling and multi-threading

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

MySQL Overview

MySQL is an open source relational database management system that was first released in 1995. It is one of the most popular databases worldwide due to its ease of use, reliability, and performance. MySQL is widely used for web applications, online transaction processing, and data warehousing. Oracle Corporation acquired MySQL in 2010, but it remains open source software with an active community of contributors.

QuestDB Overview

QuestDB is an open-source relational column-oriented database designed specifically for time series and event data. It combines high-performance ingestion capabilities with SQL analytics, making it a powerful tool for managing and analyzing large volumes of time-based data. QuestDB addresses the challenges of handling high throughput and provides a simple way to analyze ingested data through SQL queries. It is well-suited for use cases such as financial market data and application metrics.


MySQL for Time Series Data

MySQL can be used for storing and analyzing time series data, but it will not be as efficient as a dedicated time series databases. MySQL’s flexibility and support for various indexing techniques can make it a suitable choice for small to medium sized time series datasets. For large-scale time series data workloads, with high write throughput or use cases where low latency queries are required, MySQL will tend to struggle unless highly customized.

QuestDB for Time Series Data

QuestDB excels in managing and analyzing time series data. With its high-performance ingestion capabilities, it can handle high data throughput, making it suitable for real-time data ingestion scenarios. QuestDB’s SQL extensions for time series enable users to perform real-time analytics and gain valuable insights from their time-stamped data. Whether it’s financial market data or application metrics, QuestDB simplifies the process of ingesting and analyzing time series data through its fast SQL queries and operational simplicity.


MySQL Key Concepts

  • Table: A collection of related data organized in rows and columns, which is the primary structure for storing data in MySQL.
  • Primary Key: A unique identifier for each row in a table, used to enforce data integrity and enable efficient querying.
  • Foreign Key: A column or set of columns in a table that refers to the primary key in another table, used to establish relationships between tables.

QuestDB Key Concepts

  • Time Series: QuestDB focuses on time series data, which represents data points indexed by time. It is optimized for storing and processing time-stamped data efficiently.
  • Column-Oriented: QuestDB employs a column-oriented storage format, where data is organized and stored column by column rather than row by row. This format enables efficient compression and faster query performance.
  • SQL Extensions: QuestDB extends the SQL language with functionalities specifically tailored for time series data. These extensions facilitate real-time analytics and allow users to leverage familiar SQL constructs for querying time-based data.


MySQL Architecture

MySQL is a relational database management system that uses SQL for defining and manipulating data. It follows the client-server model, where a MySQL server accepts connections from multiple clients and processes their queries. MySQL’s architecture includes a storage engine framework that allows users to choose from different storage engines, such as InnoDB, MyISAM, or Memory, to optimize the database for specific use cases.

QuestDB Architecture

QuestDB follows a hybrid architecture that combines features of columnar and row-based databases. It leverages a column-oriented storage format for efficient compression and query performance while retaining the ability to handle relational data with SQL capabilities. QuestDB supports both SQL and NoSQL-like functionalities, providing users with flexibility in their data modeling and querying approaches. The database consists of multiple components, including the ingestion engine, storage engine, and query engine, working together to ensure high-performance data ingestion and retrieval.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

MySQL Features

ACID compliance

MySQL supports transactions and adheres to the ACID (Atomicity, Consistency, Isolation, Durability) properties, ensuring data integrity and consistency.

Scalability

MySQL can scale both vertically and horizontally, depending on the storage engine and configuration.

Replication and high availability

MySQL supports various replication techniques, including master-slave and master-master replication, to provide high availability and fault tolerance.

QuestDB Features

High-Performance Ingestion

QuestDB is optimized for high throughput ingestion, allowing users to efficiently ingest large volumes of time series data at high speeds.

Fast SQL Queries

QuestDB provides fast SQL queries for analyzing time series data. It extends the SQL language with time series-specific functionalities to assist with real-time analytics.

Operational Simplicity

QuestDB aims to provide a user-friendly experience with operational simplicity. It supports schema-agnostic ingestion using popular protocols such as InfluxDB line protocol and PostgreSQL wire protocol. Additionally, a REST API is available for bulk imports and exports, simplifying data management tasks.


MySQL Use Cases

Web applications

MySQL is a popular choice for powering web applications, content management systems, and e-commerce platforms due to its flexibility, ease of use, and performance.

Online transaction processing (OLTP)

MySQL is suitable for OLTP systems that require high concurrency, fast response times, and support for transactions.

Data warehousing

While not specifically designed for data warehousing, MySQL can be used for small to medium-sized data warehouses, leveraging its support for indexing, partitioning, and other optimization techniques.

QuestDB Use Cases

Financial Market Data

QuestDB is well-suited for managing and analyzing financial market data. Its high-performance ingestion and fast SQL queries enable efficient processing and analysis of large volumes of market data in real time.

Application Metrics

QuestDB can be used for collecting and analyzing application metrics. Its ability to handle high data throughput and provide real-time analytics capabilities makes it suitable for monitoring and analyzing performance metrics, logs, and other application-related data.

IoT Data Analysis

QuestDB’s high-performance ingestion and time series analytics capabilities make it a valuable tool for analyzing IoT sensor data.


MySQL Pricing Model

MySQL is available in multiple editions with different feature sets and pricing models. The MySQL Community Edition is open source and free to use, while the MySQL Enterprise Edition includes additional features, such as advanced security, monitoring, and management tools, and requires a subscription. Pricing for the Enterprise Edition depends on the number of server instances and the level of support required.

QuestDB Pricing Model

QuestDB is an open-source project released under the Apache 2 License. It is freely available for usage and does not require any licensing fees. Users can access the source code on GitHub and deploy QuestDB on their own infrastructure without incurring direct costs. QuestDB also offers a managed cloud service.