Mimir vs StarRocks
A detailed comparison
Compare Mimir and StarRocks for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Mimir and StarRocks so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Mimir and StarRocks perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Mimir vs StarRocks Breakdown
Database Model | Time series database |
Data warehouse |
Architecture | Grafana Mimir is a time series database designed for high-performance, real-time monitoring, and analytics. It features a distributed architecture, allowing for horizontal scaling across multiple nodes to handle large volumes of data and queries. It can be deployed on-prem due to being open source or as a managed solution hosted by Grafana |
StarRocks can be deployed on-premises, in the cloud, or in a hybrid environment, depending on your infrastructure preferences and requirements. |
License | APGL 3.0 |
Apache 2.0 |
Use Cases | Monitoring, observability, IoT |
Business intelligence, analytics, real-time data processing, large-scale data storage |
Scalability | Horizontally scalable |
Horizontally scalable, with support for distributed storage and query processing |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Mimir Overview
Grafana Mimir is an open-source software project that provides a scalable long-term storage solution for Prometheus. Started at Grafana Labs and announced in 2022, Grafana Mimir aims to become the most scalable and performant open-source time series database for metrics. The project incorporates the knowledge and experience gained by Grafana Labs engineers from running Grafana Enterprise Metrics and Grafana Cloud Metrics at massive scale.
StarRocks Overview
StarRocks is an open source high-performance analytical data warehouse that enables real-time, multi-dimensional, and highly concurrent data analysis. It features an MPP (Massively Parallel Processing) architecture and is equipped with a fully vectorized execution engine and a columnar storage engine that supports real-time updates.
Mimir for Time Series Data
Grafana Mimir is well-suited for handling time series data, making it a suitable choice for scenarios involving metric storage and analysis. It provides long-term storage capabilities for Prometheus, a popular open-source monitoring and alerting system. With Grafana Mimir, users can store and query time series metrics over extended periods, allowing for historical analysis and trend detection. It is especially useful for applications that require scalable and performant storage of time series data for metrics monitoring and observability purposes.
StarRocks for Time Series Data
StarRocks is primarily focused on data warehousing workloads but can be used for time series data. StarRocks can be used for real time analytics and historical data analysis.
Mimir Key Concepts
- Metrics: In Grafana Mimir, metrics represent the measurements or observations tracked over time. They can include various types of data, such as system metrics, application performance metrics, or sensor data.
- Long-term Storage: Grafana Mimir provides a storage solution specifically tailored for long-term retention of time series data, allowing users to store and query historical metrics over extended periods.
- Microservices: Grafana Mimir adopts a microservices-based architecture, where the system consists of multiple horizontally scalable microservices that can operate independently and in parallel.
StarRocks Key Concepts
- MPP Architecture: StarRocks utilizes an MPP architecture, which enables parallel processing and distributed execution of queries, allowing for high-performance and scalability.
- Vectorized Execution Engine: StarRocks employs a fully vectorized execution engine that leverages SIMD (Single Instruction, Multiple Data) instructions to process data in batches, resulting in optimized query performance.
- Columnar Storage Engine: The columnar storage engine in StarRocks organizes data by column, which improves query performance by only accessing the necessary columns during query execution.
- Cost-Based Optimizer (CBO): StarRocks includes a fully-customized cost-based optimizer that evaluates different query execution plans and selects the most efficient plan based on estimated costs.
- Materialized View: StarRocks supports intelligent materialized views, which are precomputed summaries of data that accelerate query performance by providing faster access to aggregated data.
Mimir Architecture
Grafana Mimir adopts a microservices-based architecture, where the system comprises multiple horizontally scalable microservices. These microservices can operate independently and in parallel, allowing for efficient distribution of workload and scalability. Grafana Mimir’s components are compiled into a single binary, providing a unified and cohesive system. The architecture is designed to be highly available and multi-tenant, enabling multiple users and applications to utilize the database concurrently. This distributed architecture ensures scalability and resilience in handling large-scale metric storage and retrieval scenarios.
StarRocks Architecture
StarRock’s architecture includes a fully vectorized execution engine and a columnar storage engine for efficient data processing and storage. It also incorporates features like a cost-based optimizer and materialized views for optimized query performance. StarRocks supports real-time and batch data ingestion from a variety of sources and enables direct analysis of data stored in data lakes without data migration
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Mimir Features
Scalability
Grafana Mimir is designed to scale horizontally, enabling the system to handle growing data volumes and increasing workloads. Its horizontally scalable microservices architecture allows for seamless expansion and improved performance.
High Availability
Grafana Mimir provides high availability by ensuring redundancy and fault tolerance. It allows for replication and distribution of data across multiple nodes, ensuring data durability and continuous availability of stored metrics.
Long-term Storage
Grafana Mimir offers a dedicated solution for long-term storage of time series metrics. It provides efficient storage and retrieval mechanisms, allowing users to retain and analyze historical metric data over extended periods.
StarRocks Features
Multi-Dimensional Analysis
StarRocks supports multi-dimensional analysis, enabling users to explore data from different dimensions and perspectives.
High Concurrency
StarRocks is designed to handle high levels of concurrency, allowing multiple users to execute queries simultaneously.
Materialized View
StarRocks supports materialized views, which provide precomputed summaries of data for faster query performance.
Mimir Use Cases
Metrics Monitoring and Observability
Grafana Mimir is well-suited for monitoring and observability use cases. It enables the storage and analysis of time series metrics, allowing users to monitor the performance, health, and behavior of their systems and applications in real-time.
Long Term Metric Storage
With its focus on providing scalable long-term storage, Grafana Mimir is ideal for applications that require retaining and analyzing historical metric data over extended periods. It allows users to store and query large volumes of time series data generated by Prometheus.
Trend and anomaly detection
By using Mimir for storing long term historical data it can be useful for detecting trends in your metrics and also for comparing current metrics to historical data to detect outliers and anomalies
StarRocks Use Cases
Real-Time Analytics
StarRocks is well-suited for real-time analytics scenarios, where users need to analyze data as it arrives, enabling them to make timely and data-driven decisions.
Ad-Hoc Queries
With its high-performance and highly concurrent data analysis capabilities, StarRocks is ideal for ad-hoc querying, allowing users to explore and analyze data interactively.
Data Lake Analytics
StarRocks supports analyzing data directly from data lakes without the need for data migration. This makes it a valuable tool for organizations leveraging data lakes for storage and analysis.
Mimir Pricing Model
Grafana Mimir is an open-source project, which means it is freely available for usage and does not require any licensing fees. Users can download the source code and deploy Grafana Mimir on their own infrastructure without incurring direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.
StarRocks Pricing Model
StarRocks can be deployed on your own hardware using the open source project. There are also a number of commercial vendors offering managed services to run StarRocks in the cloud.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.