Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Mimir and Rockset so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Mimir and Rockset perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Mimir vs Rockset Breakdown


 
Database Model

Time series database

Real time database

Architecture

Grafana Mimir is a time series database designed for high-performance, real-time monitoring, and analytics. It features a distributed architecture, allowing for horizontal scaling across multiple nodes to handle large volumes of data and queries. It can be deployed on-prem due to being open source or as a managed solution hosted by Grafana

Rockset is a real-time analytics database built for modern cloud applications, designed to enable developers to create real-time, event-driven applications and run complex queries on structured, semi-structured, and unstructured data with low-latency. Rockset uses a cloud-native, distributed architecture that separates storage and compute, allowing for horizontal scalability and efficient resource utilization. Data is automatically indexed and served by a distributed, auto-scaled set of query processing nodes.

License

APGL 3.0

Closed source

Use Cases

Monitoring, observability, IoT

Real-time analytics, event-driven applications, search and aggregations, personalized user experiences, IoT data analysis

Scalability

Horizontally scalable

Horizontally scalable with distributed storage and compute

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Mimir Overview

Grafana Mimir is an open-source software project that provides a scalable long-term storage solution for Prometheus. Started at Grafana Labs and announced in 2022, Grafana Mimir aims to become the most scalable and performant open-source time series database for metrics. The project incorporates the knowledge and experience gained by Grafana Labs engineers from running Grafana Enterprise Metrics and Grafana Cloud Metrics at massive scale.

Rockset Overview

Rockset is a real-time indexing database designed for fast, efficient querying of structured and semi-structured data. Founded in 2016 by former Facebook engineers, Rockset aims to provide a serverless search and analytics solution that enables users to build powerful applications and data-driven products without the complexities of traditional database management.


Mimir for Time Series Data

Grafana Mimir is well-suited for handling time series data, making it a suitable choice for scenarios involving metric storage and analysis. It provides long-term storage capabilities for Prometheus, a popular open-source monitoring and alerting system. With Grafana Mimir, users can store and query time series metrics over extended periods, allowing for historical analysis and trend detection. It is especially useful for applications that require scalable and performant storage of time series data for metrics monitoring and observability purposes.

Rockset for Time Series Data

Rockset’s real-time indexing and low-latency querying capabilities make it an excellent choice for time series data analysis. Its schemaless ingestion and support for complex data types enable effortless handling of time series data, while its Converged Index ensures efficient querying of both historical and real-time data. Rockset is particularly suitable for applications that demand real-time analytics, such as IoT monitoring and anomaly detection.


Mimir Key Concepts

  • Metrics: In Grafana Mimir, metrics represent the measurements or observations tracked over time. They can include various types of data, such as system metrics, application performance metrics, or sensor data.
  • Long-term Storage: Grafana Mimir provides a storage solution specifically tailored for long-term retention of time series data, allowing users to store and query historical metrics over extended periods.
  • Microservices: Grafana Mimir adopts a microservices-based architecture, where the system consists of multiple horizontally scalable microservices that can operate independently and in parallel.

Rockset Key Concepts

  • Converged Index: Rockset uses a unique indexing approach that combines both an inverted index and a columnar index, allowing the database to optimize for both search and analytics use cases.
  • Schemaless Ingestion: Rockset automatically infers schema on ingestion, making it easy to work with semi-structured data formats like JSON.
  • Virtual Instances: Rockset uses the concept of virtual instances to provide isolation and resource allocation to different workloads, ensuring predictable performance.


Mimir Architecture

Grafana Mimir adopts a microservices-based architecture, where the system comprises multiple horizontally scalable microservices. These microservices can operate independently and in parallel, allowing for efficient distribution of workload and scalability. Grafana Mimir’s components are compiled into a single binary, providing a unified and cohesive system. The architecture is designed to be highly available and multi-tenant, enabling multiple users and applications to utilize the database concurrently. This distributed architecture ensures scalability and resilience in handling large-scale metric storage and retrieval scenarios.

Rockset Architecture

Rockset uses a cloud-native, serverless architecture that is built on top of a distributed, shared-nothing system. It is a NoSQL database, which allows for greater flexibility and scalability compared to traditional relational databases. The core components of Rockset’s architecture include the Ingestion Service, Storage Service, and Query Service. The Ingestion Service is responsible for ingesting data from various sources, while the Storage Service maintains the Converged Index. The Query Service processes queries and provides APIs for developers to interact with the database.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Mimir Features

Scalability

Grafana Mimir is designed to scale horizontally, enabling the system to handle growing data volumes and increasing workloads. Its horizontally scalable microservices architecture allows for seamless expansion and improved performance.

High Availability

Grafana Mimir provides high availability by ensuring redundancy and fault tolerance. It allows for replication and distribution of data across multiple nodes, ensuring data durability and continuous availability of stored metrics.

Long-term Storage

Grafana Mimir offers a dedicated solution for long-term storage of time series metrics. It provides efficient storage and retrieval mechanisms, allowing users to retain and analyze historical metric data over extended periods.

Rockset Features

Serverless Scaling

Rockset automatically scales resources based on the workload, which means users don’t need to manage any infrastructure or capacity planning. ### Full-Text Search Rockset’s Converged Index supports full-text search, making it an ideal choice for applications that require advanced search capabilities. ### Integration with BI tools Rockset provides native integrations with popular business intelligence (BI) tools like Tableau, Looker, and Redash, allowing users to visualize and analyze their data without any additional setup.


Mimir Use Cases

Metrics Monitoring and Observability

Grafana Mimir is well-suited for monitoring and observability use cases. It enables the storage and analysis of time series metrics, allowing users to monitor the performance, health, and behavior of their systems and applications in real-time.

Long Term Metric Storage

With its focus on providing scalable long-term storage, Grafana Mimir is ideal for applications that require retaining and analyzing historical metric data over extended periods. It allows users to store and query large volumes of time series data generated by Prometheus.

Trend and anomaly detection

By using Mimir for storing long term historical data it can be useful for detecting trends in your metrics and also for comparing current metrics to historical data to detect outliers and anomalies

Rockset Use Cases

Real-Time Analytics

Rockset’s low-latency querying and real-time ingestion capabilities make it ideal for building real-time analytics dashboards for applications like IoT monitoring, social media analysis, and log analytics.

With its Converged Index and support for advanced search features, Rockset is an excellent choice for building full-text search applications, such as product catalogs or document search systems.

Machine Learning

Rockset’s ability to ingest and query large-scale, semi-structured data in real-time makes it a suitable choice for machine learning applications.


Mimir Pricing Model

Grafana Mimir is an open-source project, which means it is freely available for usage and does not require any licensing fees. Users can download the source code and deploy Grafana Mimir on their own infrastructure without incurring direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.

Rockset Pricing Model

Rockset offers a usage-based pricing model that charges customers for the amount of data ingested, the number of virtual instances, and the volume of queries executed. The pricing model is designed to be transparent and flexible, allowing users to only pay for the resources they consume. Rockset also provides a free tier with limited resources for developers to explore the platform. Users can choose between on-demand and reserved instances, depending on their needs.