Kdb vs Prometheus
A detailed comparison
Compare Kdb and Prometheus for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Kdb and Prometheus so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Kdb and Prometheus perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Kdb vs Prometheus Breakdown
Database Model | Time series and columnar database |
Time series database |
Architecture | Kdb can be deployed on-premises, in the cloud, or as a hybrid solution. |
Prometheus uses a pull-based model where it scrapes metrics from configured targets at given intervals. It stores time series data in a custom, efficient, local storage format, and supports multi-dimensional data collection, querying, and alerting. It can be deployed as a single binary on a server or on a container platform like Kubernetes. |
License | Closed source |
Apache 2.0 |
Use Cases | High-frequency trading, financial services, market data analysis, IoT, real-time analytics |
Monitoring, alerting, observability, system metrics, application metrics |
Scalability | Highly scalable with multi-threading and multi-node support, suitable for large-scale data processing |
Prometheus is designed for reliability and can scale vertically (single node with increased resources) or through federation (hierarchical setup where Prometheus servers scrape metrics from other Prometheus servers) |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Kdb Overview
kdb+ is a high-performance columnar, time series database developed by Kx Systems. Released in 2003, kdb+ is designed to efficiently manage large volumes of data, with a primary focus on financial data, such as stock market trades and quotes. It is built on the principles of the q programming language, which is a descendant of APL and K. The database is known for its speed, scalability, and ability to process both real-time and historical data.
Prometheus Overview
Prometheus is an open-source monitoring and alerting toolkit initially developed at SoundCloud in 2012. It has since become a widely adopted monitoring solution and a part of the Cloud Native Computing Foundation (CNCF) project. Prometheus focuses on providing real-time insights and alerts for containerized and microservices-based environments. Its primary use case is monitoring infrastructure and applications, with an emphasis on reliability and scalability.
Kdb for Time Series Data
kdb+ is designed to store time series data, making it a natural fit for applications that require high-speed querying and analysis of large volumes of data. Its columnar storage format allows for efficient compression and retrieval of time series data, while its q language provides a powerful and expressive means to manipulate and analyze the data. kdb+ is especially strong for financial data, though it can be used for other types of time series data as well.
Prometheus for Time Series Data
Prometheus is specifically designed for time series data, as its primary focus is on monitoring and alerting based on the state of infrastructure and applications. It uses a pull-based model, where the Prometheus server scrapes metrics from the target systems at regular intervals. This model is suitable for monitoring dynamic environments, as it allows for automatic discovery and monitoring of new instances. However, Prometheus is not intended as a general-purpose time series database and might not be the best choice for high cardinality or long-term data storage.
Kdb Key Concepts
- q language: A high-level, domain-specific programming language used for querying and manipulating data in kdb+. It combines SQL-like syntax with a functional programming style.
- Columnar storage: kdb+ stores data in columns, rather than rows, which allows for faster querying and analysis of time series data.
- Tables: kdb+ stores data in tables, which are similar to relational tables, but with a focus on columnar storage and time series data.
- Splayed tables: A table storage format where each column is stored in a separate file, further enhancing query performance.
Prometheus Key Concepts
- Metric: A numeric representation of a particular aspect of a system, such as CPU usage or memory consumption.
- Time Series: A collection of data points for a metric, indexed by timestamp.
- Label: A key-value pair that provides metadata and context for a metric, enabling more granular querying and aggregation.
- PromQL: Prometheus uses its own query language called PromQL (Prometheus Query Language) for querying time series data and generating alerts.
Kdb Architecture
kdb+ is a columnar, time series database that employs a custom data model tailored for efficient storage and querying of time series data. It does not use traditional SQL, but instead relies on the q language for querying and data manipulation. The architecture of kdb+ is designed for both in-memory and on-disk storage, with the ability to scale horizontally across multiple machines. The primary components of kdb+ are the database engine, the q language interpreter, and the built-in web server.
Prometheus Architecture
Prometheus is a single-server, standalone monitoring system that uses a pull-based approach to collect metrics from target systems. It stores time series data in a custom, highly compressed, on-disk format, optimized for fast querying and low resource usage. The architecture of Prometheus is modular and extensible, with components like exporters, service discovery mechanisms, and integrations with other monitoring systems. As a non-distributed system, it lacks built-in clustering or horizontal scalability, but it supports federation, allowing multiple Prometheus servers to share and aggregate data.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Kdb Features
High performance
kdb+ is known for its speed and performance, with its columnar storage format and q language allowing for rapid querying and analysis of time series data.
Scalability
kdb+ is designed to scale horizontally, making it suitable for handling large volumes of data across multiple machines.
q language
The q language is a powerful, expressive, and high-level language used for querying and manipulating data in kdb+. It combines SQL-like syntax with a functional programming style.
Prometheus Features
Pull-based Model
Prometheus collects metrics by actively scraping targets, enabling automatic discovery and monitoring of dynamic environments.
PromQL
The powerful Prometheus Query Language allows for expressive and flexible querying of time series data.
Alerting
Prometheus supports alerting based on user-defined rules and integrates with various alert management and notification systems.
Kdb Use Cases
Financial data analysis
kdb+ is widely used in the financial industry for the storage and analysis of stock market trades, quotes, and other time series financial data.
High-frequency trading
kdb+ is a popular choice for high-frequency trading applications due to its high performance and ability to handle large volumes of real-time data.
IoT and sensor data
kdb+ can be used to store and analyze large volumes of time series data generated by IoT devices and sensors, though its primary focus remains on financial data.
Prometheus Use Cases
Infrastructure Monitoring
Prometheus is widely used for monitoring the health and performance of containerized and microservices-based infrastructure, including Kubernetes and Docker environments.
Application Performance Monitoring (APM)
Prometheus can collect custom application metrics using client libraries and monitor application performance in real-time.
Alerting and Anomaly Detection
Prometheus enables organizations to set up alerts based on specific thresholds or conditions, helping them identify and respond to potential issues or anomalies quickly.
Kdb Pricing Model
kdb+ is a commercial product, with pricing depending on the deployment model and the number of cores or servers used. Kx Systems offers a free 32-bit version of kdb+ for non-commercial use, with limitations on the amount of memory that can be used. For commercial deployments and full-featured versions, users must contact Kx Systems for pricing details.
Prometheus Pricing Model
Prometheus is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Prometheus server. Additionally, several cloud-based managed Prometheus services, such as Grafana Cloud and Weave Cloud, offer different pricing models based on factors like data retention, query rate, and support.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.