Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of InfluxDB and Mimir so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how InfluxDB and Mimir perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

InfluxDB vs Mimir Breakdown


 
Database Model

Time Series Database

Time series database

Architecture

Cloud native architecture that can be used as a managed cloud service or self-managed on your own hardware locally

Grafana Mimir is a time series database designed for high-performance, real-time monitoring, and analytics. It features a distributed architecture, allowing for horizontal scaling across multiple nodes to handle large volumes of data and queries. It can be deployed on-prem due to being open source or as a managed solution hosted by Grafana

License

MIT

APGL 3.0

Use Cases

Monitoring, observability, IoT, real-time analytics

Monitoring, observability, IoT

Scalability

Horizontally scalable with decoupled storage and compute with InfluxDB 3.0 delivers up to 90% reduced storage costs( benchmarks )

Horizontally scalable

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

InfluxDB Overview

InfluxDB is a high-performance, time series database capable of storing any form of time series data, such as metrics, events, logs and traces. InfluxDB is developed by InfluxData and first released in 2013. InfluxDB is an open source database written in Go, with a focus on performance, scalability, and developer productivity. The database is optimized for handling time series data at scale, making it a popular choice for use cases involving monitoring performance metrics, IoT data, and real-time analytics.

InfluxDB 3.0 is the newest version of InfluxDB, currently available in InfluxDB Cloud Serverless and InfluxDB Cloud Dedicated. Built in Rust, a modern programming language designed for performance, safety, and memory management. InfluxDB also features a decoupled architecture that allows compute and storage to be scaled independently. InfluxDB 3.0 provides query support for both SQL and InfluxQL (custom SQL-like query language with added support for time-based functions).

Mimir Overview

Grafana Mimir is an open-source software project that provides a scalable long-term storage solution for Prometheus. Started at Grafana Labs and announced in 2022, Grafana Mimir aims to become the most scalable and performant open-source time series database for metrics. The project incorporates the knowledge and experience gained by Grafana Labs engineers from running Grafana Enterprise Metrics and Grafana Cloud Metrics at massive scale.


InfluxDB for Time Series Data

InfluxDB is specifically designed for time series data, making it well-suited for applications that involve tracking and analyzing data points over time. It excels in scenarios where data is being written continuously at high volumes while users also require the ability to query that data quickly after ingest for monitoring and real time analytics use cases.

Mimir for Time Series Data

Grafana Mimir is well-suited for handling time series data, making it a suitable choice for scenarios involving metric storage and analysis. It provides long-term storage capabilities for Prometheus, a popular open-source monitoring and alerting system. With Grafana Mimir, users can store and query time series metrics over extended periods, allowing for historical analysis and trend detection. It is especially useful for applications that require scalable and performant storage of time series data for metrics monitoring and observability purposes.


InfluxDB Key Concepts

  • Columnar storage: InfluxDB stores data in a column-oriented format, using Parquet for persistent file storage and Apache Arrow as the in-memory representation of data. Columnar storage results in better data compression and faster queries for analytics workloads.
  • Data Model: The InfluxDB data model will be familiar to anyone who has worked with other database systems. At the highest level are buckets, which are similar to what other systems call databases. InfluxDB measurements are synonymous with tables. Specific data points for a measurement contain tags and values. Tags are used as part of the primary key for querying data and should be used for identifying information used for filtering during queries. InfluxDB is schemaless so new fields can be added without requiring migrations or modifying a schema.
  • Integrations: InfluxDB is built to be flexible and fit into your application’s architecture. One key aspect of this is the many ways InfluxDB makes it easy to read and write data. To start, all database functionality can be accessed via HTTP API or with the InfluxDB CLI. For writing data InfluxDB created Telegraf, a tool that can collect data from hundreds of different sources via plugins and write that data to InfluxDB. Client libraries are also available for the most popular programming languages to allow writing and querying data.
  • Decoupled architecture: InfluxDB 3.0 features a decoupled architecture which allows query compute, data ingestion, and storage to be scaled independently. This allows InfluxDB to be fine-tuned for your use case and results in significant cost savings.
  • Query Languages: InfluxDB can be queried using standard SQL or InfluxQL, an SQL dialect with a number of specialized functions useful for working with time series data.
  • Retention Policies: InfluxDB allows you to define retention policies that determine how long data is stored before being automatically deleted. This is useful for managing the storage of high volume time series data.

Mimir Key Concepts

  • Metrics: In Grafana Mimir, metrics represent the measurements or observations tracked over time. They can include various types of data, such as system metrics, application performance metrics, or sensor data.
  • Long-term Storage: Grafana Mimir provides a storage solution specifically tailored for long-term retention of time series data, allowing users to store and query historical metrics over extended periods.
  • Microservices: Grafana Mimir adopts a microservices-based architecture, where the system consists of multiple horizontally scalable microservices that can operate independently and in parallel.


InfluxDB Architecture

At a high level, InfluxDB’s architecture is designed to optimize storage and query performance for time series data. The exact architecture of InfluxDB will vary slightly depending on the version and how you deploy InfluxDB.

InfluxDB 3.0’s architecture can be broken down into four key components that operate almost independently from each other, allowing for InfluxDB to be extremely flexible in terms of configuration. These components are are data ingest, data querying, data compaction, and garbage collection. Data is written via the ingesters with millisecond latency. This data can be queried almost immediately by the data queriers while in the background the compactor takes the newly written data files and combines them into larger files that will be sent to object storage. The garbage collector is responsible for data retention and space reclamations by scheduling soft and hard deletion of data.

They key part of InfluxDB’s architecture is the separation of the ingest and query components, which allows each to be scaled independently depending on the current write and query workload. The querier being able to seamlessly pull in recently written data from the ingesters as well as from object storage allows data to be stored cheaply without increasing query latency.

Mimir Architecture

Grafana Mimir adopts a microservices-based architecture, where the system comprises multiple horizontally scalable microservices. These microservices can operate independently and in parallel, allowing for efficient distribution of workload and scalability. Grafana Mimir’s components are compiled into a single binary, providing a unified and cohesive system. The architecture is designed to be highly available and multi-tenant, enabling multiple users and applications to utilize the database concurrently. This distributed architecture ensures scalability and resilience in handling large-scale metric storage and retrieval scenarios.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

InfluxDB Features

High-performance storage and querying

InfluxDB is optimized for time series data, providing high-performance storage and querying capabilities. In terms of storage InfluxDB is able to scale effortlessly due to its decoupled architecture. Object storage is used to persist data and query nodes can be scaled independently to improve query performance and capacity.

Compared to previous versions of InfluxDB, the newly released InfluxDB 3.0 compresses data 4.5x more effectively and queries are 2.5-45x faster depending on the type of query.

Retention policies

InfluxDB allows users to define retention policies that automatically delete data points after a specified duration. This feature helps manage data storage costs and ensures that only relevant data is retained.

Data compression

InfluxDB’s storage engine automatically compacts data on disk, reducing storage requirements and improving query performance. With InfluxDB 3.0 data is stored using the Parquet file format to get even higher compression ratios on time series data.

Horizontal scaling and clustering

InfluxDB supports horizontal scaling and clustering, allowing users to distribute data across multiple nodes for increased performance and fault tolerance.

Data tiering

InfluxDB 3.0 is able to seamlessly move data from cheap object storage into faster storage for low latency queries without expensive SSD or high amounts of RAM utilization. This allows users to store data for longer at higher frequencies while still saving in storage costs.

Mimir Features

Scalability

Grafana Mimir is designed to scale horizontally, enabling the system to handle growing data volumes and increasing workloads. Its horizontally scalable microservices architecture allows for seamless expansion and improved performance.

High Availability

Grafana Mimir provides high availability by ensuring redundancy and fault tolerance. It allows for replication and distribution of data across multiple nodes, ensuring data durability and continuous availability of stored metrics.

Long-term Storage

Grafana Mimir offers a dedicated solution for long-term storage of time series metrics. It provides efficient storage and retrieval mechanisms, allowing users to retain and analyze historical metric data over extended periods.


InfluxDB Use Cases

Monitoring and alerting

InfluxDB is widely used for monitoring and alerting purposes, as it can efficiently store and process time series data generated by various systems, applications, and devices. With its high-performance query engine and integration with visualization tools like Grafana, users can create real-time dashboards and set up alerts based on specific conditions or thresholds.

IoT data storage and analysis

Due to its high write and query performance, InfluxDB is an ideal choice for storing and analyzing IoT data generated by sensors, devices, and applications. Users can leverage InfluxDB’s scalability and retention policies to manage large volumes of time series data, and use its powerful query languages to gain insights into the IoT ecosystem.

Real-time analytics

InfluxDB’s performance and flexibility make it suitable for real-time analytics use cases, such as tracking user behavior, monitoring application performance, and analyzing financial data. With its support for InfluxQL and SQL, users can perform complex data analysis and aggregation in real-time, enabling them to make data-driven decisions.

Mimir Use Cases

Metrics Monitoring and Observability

Grafana Mimir is well-suited for monitoring and observability use cases. It enables the storage and analysis of time series metrics, allowing users to monitor the performance, health, and behavior of their systems and applications in real-time.

Long Term Metric Storage

With its focus on providing scalable long-term storage, Grafana Mimir is ideal for applications that require retaining and analyzing historical metric data over extended periods. It allows users to store and query large volumes of time series data generated by Prometheus.

Trend and anomaly detection

By using Mimir for storing long term historical data it can be useful for detecting trends in your metrics and also for comparing current metrics to historical data to detect outliers and anomalies


InfluxDB Pricing Model

InfluxDB offers several pricing options, including a free open source version, a cloud-based offering, and an enterprise edition for on-premises deployment:

  • InfluxDB Cloud Serverless: InfluxDB Cloud Serverless is a managed, cloud-based offering with a pay-as-you-go pricing model. It provides additional features, such as monitoring, alerting, and data visualization. InfluxDB Cloud is available across all major cloud providers.
  • InfluxDB Cloud Dedicated - This is a managed cloud solution that provides an isolated InfluxDB instance on dedicated hardware for use cases that require isolation or benefit from being able to specify and fine-tune hardware configuration.
  • InfluxDB Enterprise: On-prem solution with enterprise features for security and support for clustering and other horizontal scaling options.
  • InfluxDB Open Source: The open source version of InfluxDB is free to use and provides the core functionality of the database.

Mimir Pricing Model

Grafana Mimir is an open-source project, which means it is freely available for usage and does not require any licensing fees. Users can download the source code and deploy Grafana Mimir on their own infrastructure without incurring direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.