InfluxDB vs Datadog
A detailed comparison
Compare InfluxDB and Datadog for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of InfluxDB and Datadog so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how InfluxDB and Datadog perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
InfluxDB vs Datadog Breakdown
Database Model | Cloud observability platform |
|
Architecture | Cloud native architecture that can be used as a managed cloud service or self-managed on your own hardware locally |
Cloud-based SaaS platform |
License | MIT |
Close source |
Use Cases | Monitoring, observability, IoT, real-time analytics |
Infrastructure monitoring, application performance monitoring, log management |
Scalability | Horizontally scalable with decoupled storage and compute with InfluxDB 3.0 delivers up to 90% reduced storage costs( benchmarks ) |
Horizontally scalable with built-in support for multi-cloud and global deployments. |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
InfluxDB Overview
InfluxDB is a high-performance, time series database capable of storing any form of time series data, such as metrics, events, logs and traces. InfluxDB is developed by InfluxData and first released in 2013. InfluxDB is an open source database written in Go, with a focus on performance, scalability, and developer productivity. The database is optimized for handling time series data at scale, making it a popular choice for use cases involving monitoring performance metrics, IoT data, and real-time analytics.
InfluxDB 3.0 is the newest version of InfluxDB, currently available in InfluxDB Cloud Serverless and InfluxDB Cloud Dedicated. Built in Rust, a modern programming language designed for performance, safety, and memory management. InfluxDB also features a decoupled architecture that allows compute and storage to be scaled independently. InfluxDB 3.0 provides query support for both SQL and InfluxQL (custom SQL-like query language with added support for time-based functions).
Datadog Overview
Datadog is a monitoring and analytics platform that integrates and automates infrastructure monitoring, application performance monitoring (APM), and log management to provide unified, real-time observability of an organization’s entire technology stack. Founded in 2010, Datadog has rapidly become a go-to solution for cloud-scale monitoring, offering SaaS-based capabilities that enable businesses to improve agility, increase efficiency, and provide end-to-end visibility across dynamic, high-scale infrastructures.
InfluxDB for Time Series Data
InfluxDB is specifically designed for time series data, making it well-suited for applications that involve tracking and analyzing data points over time. It excels in scenarios where data is being written continuously at high volumes while users also require the ability to query that data quickly after ingest for monitoring and real time analytics use cases.
Datadog for Time Series Data
Datadog excels in handling time series data through its metrics-based architecture. It is optimized for collecting and analyzing data points over time, such as CPU usage, memory consumption, or request latency. While Datadog is not a dedicated time series database, it integrates features like long-term data retention, aggregation, and visualization that make it well-suited for monitoring time-dependent metrics. However, it might not be the ideal choice for massive-scale, real-time analytics compared to specialized time series databases like InfluxDB.
InfluxDB Key Concepts
- Columnar storage: InfluxDB stores data in a column-oriented format, using Parquet for persistent file storage and Apache Arrow as the in-memory representation of data. Columnar storage results in better data compression and faster queries for analytics workloads.
- Data Model: The InfluxDB data model will be familiar to anyone who has worked with other database systems. At the highest level are buckets, which are similar to what other systems call databases. InfluxDB measurements are synonymous with tables. Specific data points for a measurement contain tags and values. Tags are used as part of the primary key for querying data and should be used for identifying information used for filtering during queries. InfluxDB is schemaless so new fields can be added without requiring migrations or modifying a schema.
- Integrations: InfluxDB is built to be flexible and fit into your application’s architecture. One key aspect of this is the many ways InfluxDB makes it easy to read and write data. To start, all database functionality can be accessed via HTTP API or with the InfluxDB CLI. For writing data InfluxDB created Telegraf, a tool that can collect data from hundreds of different sources via plugins and write that data to InfluxDB. Client libraries are also available for the most popular programming languages to allow writing and querying data.
- Decoupled architecture: InfluxDB 3.0 features a decoupled architecture which allows query compute, data ingestion, and storage to be scaled independently. This allows InfluxDB to be fine-tuned for your use case and results in significant cost savings.
- Query Languages: InfluxDB can be queried using standard SQL or InfluxQL, an SQL dialect with a number of specialized functions useful for working with time series data.
- Retention Policies: InfluxDB allows you to define retention policies that determine how long data is stored before being automatically deleted. This is useful for managing the storage of high volume time series data.
Datadog Key Concepts
- Datadog Agent: The Datadog Agent is a lightweight software installed on your servers, containers, or endpoints to collect and report metrics, logs, and traces. It acts as the primary bridge between your systems and the Datadog platform.
- Dashboards: Dashboards in Datadog provide a customizable interface to visualize metrics, logs, and traces. They support various widgets, including time-series graphs, gauges, and heat maps, to present data in a meaningful way.
- Integration : Datadog supports over 600 integrations to connect with various technologies, such as databases, cloud providers, and container orchestrators. Each integration collects relevant metrics, logs, and events and may require specific configuration via the Agent.
- Events: Events are data that are streamed to Datadog via Agents, integrations, or custom applications. They are streamed to Datadog and can be used for filtering and correlating what is happening in your application
- Tagging : Tags are metadata assigned to metrics, logs, and traces to group, filter, and search data. Effective use of tags, such as environment, region, or service, is crucial for organizing and analyzing data efficiently.
InfluxDB Architecture
At a high level, InfluxDB’s architecture is designed to optimize storage and query performance for time series data. The exact architecture of InfluxDB will vary slightly depending on the version and how you deploy InfluxDB.
InfluxDB 3.0’s architecture can be broken down into four key components that operate almost independently from each other, allowing for InfluxDB to be extremely flexible in terms of configuration. These components are are data ingest, data querying, data compaction, and garbage collection. Data is written via the ingesters with millisecond latency. This data can be queried almost immediately by the data queriers while in the background the compactor takes the newly written data files and combines them into larger files that will be sent to object storage. The garbage collector is responsible for data retention and space reclamations by scheduling soft and hard deletion of data.
They key part of InfluxDB’s architecture is the separation of the ingest and query components, which allows each to be scaled independently depending on the current write and query workload. The querier being able to seamlessly pull in recently written data from the ingesters as well as from object storage allows data to be stored cheaply without increasing query latency.
Datadog Architecture
Datadog employs a SaaS (Software-as-a-Service) model with a highly distributed, cloud-based architecture. It uses agents to collect data from various sources, which are then processed and stored in Datadog’s cloud. The platform supports both structured and unstructured data, and its backend utilizes modern distributed systems principles to ensure scalability and reliability. Key components include the data ingestion pipeline, a metrics store, a logs processing system, and a query engine.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
InfluxDB Features
High-performance storage and querying
InfluxDB is optimized for time series data, providing high-performance storage and querying capabilities. In terms of storage InfluxDB is able to scale effortlessly due to its decoupled architecture. Object storage is used to persist data and query nodes can be scaled independently to improve query performance and capacity.
Compared to previous versions of InfluxDB, the newly released InfluxDB 3.0 compresses data 4.5x more effectively and queries are 2.5-45x faster depending on the type of query.
Retention policies
InfluxDB allows users to define retention policies that automatically delete data points after a specified duration. This feature helps manage data storage costs and ensures that only relevant data is retained.
Data compression
InfluxDB’s storage engine automatically compacts data on disk, reducing storage requirements and improving query performance. With InfluxDB 3.0 data is stored using the Parquet file format to get even higher compression ratios on time series data.
Horizontal scaling and clustering
InfluxDB supports horizontal scaling and clustering, allowing users to distribute data across multiple nodes for increased performance and fault tolerance.
Data tiering
InfluxDB 3.0 is able to seamlessly move data from cheap object storage into faster storage for low latency queries without expensive SSD or high amounts of RAM utilization. This allows users to store data for longer at higher frequencies while still saving in storage costs.
Datadog Features
Real-time dashboards
Datadog offers customizable, real-time dashboards that enable users to monitor a variety of metrics, traces, and logs all in one place. This centralized view aids in quick issue detection and resolution. These dashboards are interactive, enabling drilling down into granular details, facilitating precise troubleshooting and root cause analysis.
Automated alerts
Automated alerts in Datadog can notify teams of any issues or anomalies in real-time. These alerts can be fine-tuned to avoid noise and false positives, ensuring that only actionable insights get attention. They can also be integrated with third-party communication tools like Slack or PagerDuty for a seamless incident response.
Synthetic monitoring
Datadog’s synthetic monitoring allows users to simulate user transactions and monitor uptime, latency, and functionality of applications. This feature ensures that critical endpoints remain available and performant.
InfluxDB Use Cases
Monitoring and alerting
InfluxDB is widely used for monitoring and alerting purposes, as it can efficiently store and process time series data generated by various systems, applications, and devices. With its high-performance query engine and integration with visualization tools like Grafana, users can create real-time dashboards and set up alerts based on specific conditions or thresholds.
IoT data storage and analysis
Due to its high write and query performance, InfluxDB is an ideal choice for storing and analyzing IoT data generated by sensors, devices, and applications. Users can leverage InfluxDB’s scalability and retention policies to manage large volumes of time series data, and use its powerful query languages to gain insights into the IoT ecosystem.
Real-time analytics
InfluxDB’s performance and flexibility make it suitable for real-time analytics use cases, such as tracking user behavior, monitoring application performance, and analyzing financial data. With its support for InfluxQL and SQL, users can perform complex data analysis and aggregation in real-time, enabling them to make data-driven decisions.
Datadog Use Cases
Infrastructure monitoring
One of the primary use-cases for Datadog is real-time infrastructure monitoring. Businesses can keep tabs on servers, containers, databases, and more, all in one place. The comprehensive coverage helps teams quickly identify performance bottlenecks or availability issues, thereby minimizing downtime and enhancing system reliability.
Application performance monitoring
Datadog’s APM capabilities enable organizations to trace requests as they traverse through various services and components of an application. This is essential for microservices architectures where understanding the interactions between services can be complex. It helps in identifying slow services that could be affecting the application’s overall performance.
Security monitoring
Datadog assists organizations in monitoring security-related events by collecting logs and metrics from various sources. It helps in detecting unusual activities, unauthorized access, and potential threats. By correlating data across the stack, security teams can investigate incidents more effectively. Datadog’s compliance monitoring features support adherence to standards like PCI DSS, HIPAA, and GDPR.
InfluxDB Pricing Model
InfluxDB offers several pricing options, including a free open source version, a cloud-based offering, and an enterprise edition for on-premises deployment:
- InfluxDB Cloud Serverless: InfluxDB Cloud Serverless is a managed, cloud-based offering with a pay-as-you-go pricing model. It provides additional features, such as monitoring, alerting, and data visualization. InfluxDB Cloud is available across all major cloud providers.
- InfluxDB Cloud Dedicated - This is a managed cloud solution that provides an isolated InfluxDB instance on dedicated hardware for use cases that require isolation or benefit from being able to specify and fine-tune hardware configuration.
- InfluxDB Enterprise: On-prem solution with enterprise features for security and support for clustering and other horizontal scaling options.
- InfluxDB Open Source: The open source version of InfluxDB is free to use and provides the core functionality of the database.
Datadog Pricing Model
Datadog uses a modular, usage-based pricing model where customers pay based on the specific products and volume of data they use. Pricing is typically divided among different products like Infrastructure Monitoring, APM, Logs, and more. Each product has its own pricing structure, often based on the number of hosts, instances, or data ingested. Datadog offers a Free tier with limited features and data caps, as well as Pro and Enterprise tiers that provide advanced features and higher limits.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.