Graphite vs Apache Pinot
A detailed comparison
Compare Graphite and Apache Pinot for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Graphite and Apache Pinot so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Graphite and Apache Pinot perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Graphite vs Apache Pinot Breakdown
Database Model | Time series database |
Columnar database |
Architecture | Graphite can be deployed on-premises or in the cloud, and it supports horizontal scaling by partitioning data across multiple backend nodes. |
Pinot can be deployed on-premises, in the cloud, or using a managed service |
License | Apache 2.0 |
Apache 2.0 |
Use Cases | Monitoring, observability, IoT, real-time analytics, DevOps, application performance monitoring |
Real-time analytics, OLAP, user behavior analytics, clickstream analysis, ad tech, log analytics |
Scalability | Horizontally scalable, supports clustering and replication for high availability and performance |
Horizontally scalable, supports distributed architectures for high availability and performance |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Graphite Overview
Graphite is an open-source monitoring and graphing tool created in 2006 by Orbitz and open sourced in 2008. Graphite is designed for storing time series data and is widely used for collecting, storing, and visualizing metrics from various sources, such as application performance, system monitoring, and business analytics.
Apache Pinot Overview
Apache Pinot is a real-time distributed OLAP datastore, designed to answer complex analytical queries with low latency. It was initially developed at LinkedIn and later open-sourced in 2015. Pinot is well-suited for handling large-scale data and real-time analytics, providing near-instantaneous responses to complex queries on large datasets. It is used by several large organizations, such as LinkedIn, Microsoft, and Uber.
Graphite for Time Series Data
Graphite is specifically designed and optimized for time series data. It uses the Whisper database format, which efficiently stores and manages time series data by automatically aggregating and expiring data based on user-defined retention policies. Graphite supports a wide range of functions for querying, transforming, and aggregating time series data, enabling users to create custom graphs and dashboards. However, as Graphite focuses exclusively on time series data, it may not be suitable for other types of data or use cases that require more advanced data modeling or querying capabilities.
Apache Pinot for Time Series Data
Apache Pinot is a solid choice for working with time series data due to its columnar storage and real-time ingestion capabilities. Pinot’s ability to ingest data from streams like Apache Kafka ensures that time series data can be analyzed as it is being generated, in addition to having options for bulk ingesting data.
Graphite Key Concepts
- Metric: A metric in Graphite represents a time series data point, consisting of a path (name), timestamp, and value.
- Series: A series is a collection of metrics that are all related to the same thing. For example, you might have a series for CPU usage, a series for memory usage, and a series for disk usage.
- Whisper: Whisper is a fixed-size, file-based time series database format used by Graphite. It automatically manages data retention and aggregation.
- Carbon: Carbon is the daemon responsible for receiving, caching, and storing metrics in Graphite. It listens for incoming metrics and writes them to Whisper files.
- Graphite-web: Graphite-web is the web application that provides a user interface for visualizing and querying the stored time series data.
Apache Pinot Key Concepts
- Segment: A segment is the basic unit of data storage in Pinot. It is a columnar storage format that contains a subset of the table’s data.
- Table: A table in Pinot is a collection of segments.
- Controller: The controller manages the metadata and orchestrates data ingestion, query execution, and cluster management.
- Broker: The broker is responsible for receiving queries, routing them to the appropriate servers, and returning the results to the client.
- Server: The server stores segments and processes queries on those segments.
Graphite Architecture
Graphite’s architecture consists of several components, including Carbon, Whisper, and Graphite-web. Carbon is responsible for receiving metrics from various sources, caching them in memory, and storing them in Whisper files. Whisper is a file-based time series database format that efficiently manages data retention and aggregation. Graphite-web is the web application that provides a user interface for querying and visualizing the stored time series data. Graphite can be deployed on a single server or distributed across multiple servers for improved performance and scalability.
Apache Pinot Architecture
Pinot is a distributed, columnar datastore that uses a hybrid data model, combining features of both NoSQL and SQL databases. Its architecture consists of three main components: Controller, Broker, and Server. The Controller manages metadata and cluster operations, while Brokers handle query routing and Servers store and process data. Pinot’s columnar storage format enables efficient compression and quick query processing.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Graphite Features
Real-time monitoring and visualization
Graphite provides real-time monitoring and visualization capabilities, allowing users to track and analyze their time series data as it is collected.
Flexible querying and aggregation functions
Graphite supports a wide range of functions for querying, transforming, and aggregating time series data, enabling users to create custom graphs and dashboards tailored to their specific needs.
Data retention and aggregation
Graphite’s Whisper database format automatically manages data retention and aggregation, reducing storage requirements and improving query performance.
Apache Pinot Features
Real-time Ingestion
Pinot supports real-time data ingestion from Kafka and other streaming sources, allowing for up-to-date analytics.
Scalability
Pinot’s distributed architecture and partitioning capabilities enable horizontal scaling to handle large datasets and high query loads.
Low-latency Query Processing
Pinot’s columnar storage format and various performance optimizations allow for near-instantaneous responses to complex queries.
Graphite Use Cases
Application performance monitoring
Graphite is widely used for monitoring the performance of applications and services, helping developers and operations teams track key metrics, such as response times, error rates, and resource utilization. By visualizing these metrics in real-time, users can identify performance bottlenecks, detect issues, and optimize their applications for better performance and reliability.
Infrastructure and system monitoring
Graphite is also popular for monitoring the health and performance of servers, networks, and other infrastructure components. By collecting and analyzing metrics such as CPU usage, memory consumption, network latency, and disk I/O, IT administrators can ensure their infrastructure is running smoothly and proactively address potential issues before they impact system performance or availability.
Business analytics and metrics
In addition to technical monitoring, Graphite can be used for tracking and visualizing business-related metrics, such as user engagement, sales data, or marketing campaign performance. By visualizing and analyzing these metrics over time, business stakeholders can gain insights into trends, identify opportunities for growth, and make data-driven decisions to improve their operations.
Apache Pinot Use Cases
Real-time Analytics
Pinot is designed to support real-time analytics, making it suitable for use cases that require up-to-date insights on large-scale data, such as monitoring and alerting systems, fraud detection, and recommendation engines.
Ad Tech and User Analytics
Apache Pinot is often used in the advertising technology and user analytics space, where low-latency, high-concurrency analytics are crucial for understanding user behavior, optimizing ad campaigns, and personalizing user experiences.
Anomaly Detection and Monitoring
Pinot’s real-time analytics capabilities make it suitable for anomaly detection and monitoring use cases, enabling users to identify unusual patterns or trends in their data and take corrective action as needed.
Graphite Pricing Model
Graphite is an open-source project, and as such, it is freely available for users to download, install, and use without any licensing fees. However, users are responsible for setting up and maintaining their own Graphite infrastructure, which may involve costs related to server hardware, storage, and operational expenses. There are also several commercial products and services that build on top of or integrate with Graphite, offering additional features, support, or managed hosting options at varying price points.
Apache Pinot Pricing Model
As an open-source project, Apache Pinot is free to use. However, organizations may incur costs related to hardware, infrastructure, and support when deploying and managing a Pinot cluster. There are no specific pricing options or deployment models tied to Apache Pinot itself.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.