Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Graphite and M3 so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Graphite and M3 perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Graphite vs M3 Breakdown


 
Database Model

Time series database

Time series database

Architecture

Graphite can be deployed on-premises or in the cloud, and it supports horizontal scaling by partitioning data across multiple backend nodes.

The M3 stack can be deployed on-premises or in the cloud, using containerization technologies like Kubernetes or as a managed service on platforms like AWS or GCP

License

Apache 2.0

Apache 2.0

Use Cases

Monitoring, observability, IoT, real-time analytics, DevOps, application performance monitoring

Monitoring, observability, IoT, Real-time analytics, large-scale metrics processing

Scalability

Horizontally scalable, supports clustering and replication for high availability and performance

Horizontally scalable, designed for high availability and large-scale deployments

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Graphite Overview

Graphite is an open-source monitoring and graphing tool created in 2006 by Orbitz and open sourced in 2008. Graphite is designed for storing time series data and is widely used for collecting, storing, and visualizing metrics from various sources, such as application performance, system monitoring, and business analytics.

M3 Overview

M3 is a distributed time series database written entirely in Go. It is designed to collect a high volume of monitoring time series data, distribute storage in a horizontally scalable manner, and efficiently leverage hardware resources. M3 was initially developed by Uber as a scalable remote storage backend for Prometheus and Graphite and later open-sourced for broader use.


Graphite for Time Series Data

Graphite is specifically designed and optimized for time series data. It uses the Whisper database format, which efficiently stores and manages time series data by automatically aggregating and expiring data based on user-defined retention policies. Graphite supports a wide range of functions for querying, transforming, and aggregating time series data, enabling users to create custom graphs and dashboards. However, as Graphite focuses exclusively on time series data, it may not be suitable for other types of data or use cases that require more advanced data modeling or querying capabilities.

M3 for Time Series Data

M3 is specifically designed for time-series data. It is a distributed and scalable time-series database optimized for handling large volumes of high-resolution data points, making it an ideal solution for storing, querying, and analyzing time-series data.

M3’s architecture focuses on providing fast and efficient querying capabilities, as well as high ingestion rates, which are essential for working with time-series data. Its horizontal scalability and high availability ensure that it can handle the demands of large-scale deployments and maintain performance as data volumes grow.


Graphite Key Concepts

  • Metric: A metric in Graphite represents a time series data point, consisting of a path (name), timestamp, and value.
  • Series: A series is a collection of metrics that are all related to the same thing. For example, you might have a series for CPU usage, a series for memory usage, and a series for disk usage.
  • Whisper: Whisper is a fixed-size, file-based time series database format used by Graphite. It automatically manages data retention and aggregation.
  • Carbon: Carbon is the daemon responsible for receiving, caching, and storing metrics in Graphite. It listens for incoming metrics and writes them to Whisper files.
  • Graphite-web: Graphite-web is the web application that provides a user interface for visualizing and querying the stored time series data.

M3 Key Concepts

  • Time Series Compression: M3 has the ability to compress time series data, resulting in significant memory and disk savings. It uses two compression algorithms, M3TSZ and protobuf encoding, to achieve efficient data compression.
  • Sharding: M3 uses virtual shards that are assigned to physical nodes. Timeseries keys are hashed to a fixed set of virtual shards, making horizontal scaling and node management seamless.
  • Consistency Levels: M3 provides variable consistency levels for read and write operations, as well as cluster connection operations. Write consistency levels include One (success of a single node), Majority (success of the majority of nodes), and All (success of all nodes). Read consistency level is One, which corresponds to reading from a single nod


Graphite Architecture

Graphite’s architecture consists of several components, including Carbon, Whisper, and Graphite-web. Carbon is responsible for receiving metrics from various sources, caching them in memory, and storing them in Whisper files. Whisper is a file-based time series database format that efficiently manages data retention and aggregation. Graphite-web is the web application that provides a user interface for querying and visualizing the stored time series data. Graphite can be deployed on a single server or distributed across multiple servers for improved performance and scalability.

M3 Architecture

M3 is designed to be horizontally scalable and handle high data throughput. It uses fileset files as the primary unit of long-term storage, storing compressed streams of time series values. These files are flushed to disk after a block time window becomes unreachable. M3 has a commit log, equivalent to the commit log or write-ahead-log in other databases, which ensures data integrity. Client Peer streaming is responsible for fetching blocks from peers for bootstrapping purposes. M3 also implements caching policies to optimize efficient reads by determining which flushed blocks are kept in memory.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Graphite Features

Real-time monitoring and visualization

Graphite provides real-time monitoring and visualization capabilities, allowing users to track and analyze their time series data as it is collected.

Flexible querying and aggregation functions

Graphite supports a wide range of functions for querying, transforming, and aggregating time series data, enabling users to create custom graphs and dashboards tailored to their specific needs.

Data retention and aggregation

Graphite’s Whisper database format automatically manages data retention and aggregation, reducing storage requirements and improving query performance.

M3 Features

Commit Log

M3 uses a commit log to ensure data integrity, providing durability for write operations.

Peer Streaming

M3’s client peer streaming fetches data blocks from peers for bootstrapping purposes, optimizing data retrieval and distribution.

Caching Mechanisms

M3 implements various caching policies to efficiently manage memory usage, keeping frequently accessed data blocks in memory for faster reads.


Graphite Use Cases

Application performance monitoring

Graphite is widely used for monitoring the performance of applications and services, helping developers and operations teams track key metrics, such as response times, error rates, and resource utilization. By visualizing these metrics in real-time, users can identify performance bottlenecks, detect issues, and optimize their applications for better performance and reliability.

Infrastructure and system monitoring

Graphite is also popular for monitoring the health and performance of servers, networks, and other infrastructure components. By collecting and analyzing metrics such as CPU usage, memory consumption, network latency, and disk I/O, IT administrators can ensure their infrastructure is running smoothly and proactively address potential issues before they impact system performance or availability.

Business analytics and metrics

In addition to technical monitoring, Graphite can be used for tracking and visualizing business-related metrics, such as user engagement, sales data, or marketing campaign performance. By visualizing and analyzing these metrics over time, business stakeholders can gain insights into trends, identify opportunities for growth, and make data-driven decisions to improve their operations.

M3 Use Cases

Monitoring and Observability

M3 is particularly suitable for large-scale monitoring and observability tasks, as it can store and manage massive volumes of time-series data generated by infrastructure, applications, and microservices. Organizations can use M3 to analyze, visualize, and detect anomalies in the metrics collected from various sources, enabling them to identify potential issues and optimize their systems.

IoT and Sensor Data

M3 can be used to store and process the vast amounts of time-series data generated by IoT devices and sensors. By handling data from millions of devices and sensors, M3 can provide organizations with valuable insights into the performance, usage patterns, and potential issues of their connected devices. This information can be used for optimization, predictive maintenance, and improving the overall efficiency of IoT systems.

Financial Data Analysis

Financial organizations can use M3 to store and analyze time-series data related to stocks, bonds, commodities, and other financial instruments. By providing fast and efficient querying capabilities, M3 can help analysts and traders make more informed decisions based on historical trends, current market conditions, and potential future developments.


Graphite Pricing Model

Graphite is an open-source project, and as such, it is freely available for users to download, install, and use without any licensing fees. However, users are responsible for setting up and maintaining their own Graphite infrastructure, which may involve costs related to server hardware, storage, and operational expenses. There are also several commercial products and services that build on top of or integrate with Graphite, offering additional features, support, or managed hosting options at varying price points.

M3 Pricing Model

M3 is an open source database and can be used freely, although you will have to account for the cost of managing your infrastructure and the hardware used to run M3. Chronosphere is the co-maintainer of M3 along with Uber and also offers a hosted observability that uses M3 as the backend storage layer.