Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Elasticsearch and PostgreSQL so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Elasticsearch and PostgreSQL perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Elasticsearch vs PostgreSQL Breakdown


 
Database Model

Distributed search and analytics engine, document-oriented

Relational database

Architecture

Elasticsearch is built on top of Apache Lucene and uses a RESTful API for communication. It stores data in a flexible JSON document format, and the data is automatically indexed for fast search and retrieval. Elasticsearch can be deployed as a single node, in a cluster configuration, or as a managed cloud service (Elastic Cloud)

PostgreSQL can be deployed on various platforms, such as on-premises, in virtual machines, or as a managed cloud service like Amazon RDS, Google Cloud SQL, or Azure Database for PostgreSQL.

License

Elastic License

PostgreSQL license (similar to MIT or BSD)

Use Cases

Full-text search, log and event data analysis, real-time application monitoring, analytics

Web applications, geospatial data, business intelligence, analytics, content management systems, financial applications, scientific applications

Scalability

Horizontally scalable with support for data sharding, replication, and distributed querying

Supports vertical scaling, horizontal scaling through partitioning, sharding, and replication using available tools

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Elasticsearch Overview

Elasticsearch is an open-source distributed search and analytics engine built on top of Apache Lucene. It was first released in 2010 and has since become popular for its scalability, near real-time search capabilities, and ease of use. Elasticsearch is designed to handle a wide variety of data types, including structured, unstructured, and time-based data. It is often used in conjunction with other tools from the Elastic Stack, such as Logstash for data ingestion and Kibana for data visualization.

PostgreSQL Overview

PostgreSQL, also known as Postgres, is an open-source relational database management system that was first released in 1996. It has a long history of being a robust, reliable, and feature-rich database system, widely used in various industries and applications. PostgreSQL is known for its adherence to the SQL standard and extensibility, which allows users to define their own data types, operators, and functions. It is developed and maintained by a dedicated community of contributors and is available on multiple platforms, including Windows, Linux, and macOS.


Elasticsearch for Time Series Data

Elasticsearch can be used for time series data storage and analysis, thanks to its distributed architecture, near real-time search capabilities, and support for aggregations. However, it might not be as optimized for time series data as dedicated time series databases. Despite this, Elasticsearch is widely used for log and event data storage and analysis which can be considered time series data.

PostgreSQL for Time Series Data

PostgreSQL can be used for time series data storage and analysis, although it was not specifically designed for this use case. With its rich set of data types, indexing options, and window function support, PostgreSQL can handle time series data. However, Postgres will not be as optimized for time series data as specialized time series databases when it comes to things like data compression, write throughput, and query speed. PostgreSQL also lacks a number of features that are useful for working with time series data like downsampling, retention policies, and custom SQL functions for time series data analysis.


Elasticsearch Key Concepts

  • Inverted Index: A data structure used by Elasticsearch to enable fast and efficient full-text searches.
  • Cluster: A group of Elasticsearch nodes that work together to distribute data and processing tasks.
  • Shard: A partition of an Elasticsearch index that allows data to be distributed across multiple nodes for improved performance and fault tolerance.

PostgreSQL Key Concepts

  • MVCC: Multi-Version Concurrency Control is a technique used by PostgreSQL to allow multiple transactions to be executed concurrently without conflicts or locking.
  • WAL: Write-Ahead Logging is a method used to ensure data durability by logging changes to a journal before they are written to the main data files.
  • TOAST: The Oversized-Attribute Storage Technique is a mechanism for storing large data values in a separate table to reduce the main table’s disk space consumption.


Elasticsearch Architecture

Elasticsearch is a distributed, RESTful search and analytics engine that uses a schema-free JSON document data model. It is built on top of Apache Lucene and provides a high-level API for indexing, searching, and analyzing data. Elasticsearch’s architecture is designed to be horizontally scalable, with data distributed across multiple nodes in a cluster. Data is indexed using inverted indices, which enable fast and efficient full-text searches.

PostgreSQL Architecture

PostgreSQL is a client-server relational database system that uses the SQL language for querying and manipulation. It employs a process-based architecture, with each connection to the database being handled by a separate server process. This architecture provides isolation between different users and sessions. PostgreSQL supports ACID transactions and uses a combination of MVCC, WAL, and other techniques to ensure data consistency, durability, and performance. It also supports various extensions and external modules to enhance its functionality.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Elasticsearch Features

Elasticsearch provides powerful full-text search capabilities with support for complex queries, scoring, and relevance ranking.

Scalability

Elasticsearch’s distributed architecture enables horizontal scalability, allowing it to handle large volumes of data and high query loads.

Aggregations

Elasticsearch supports various aggregation operations, such as sum, average, and percentiles, which are useful for analyzing and summarizing data.

PostgreSQL Features

Extensibility

PostgreSQL allows users to define custom data types, operators, and functions, making it highly adaptable to specific application requirements.

PostgreSQL has built-in support for full-text search, enabling users to perform complex text-based queries and analyses.

Geospatial support

With the PostGIS extension, PostgreSQL can store and manipulate geospatial data, making it suitable for GIS applications.


Elasticsearch Use Cases

Log and Event Data Analysis

Elasticsearch is widely used for storing and analyzing log and event data, such as web server logs, application logs, and network events, to help identify patterns, troubleshoot issues, and monitor system performance.

Elasticsearch is a popular choice for implementing full-text search functionality in applications, websites, and content management systems due to its powerful search capabilities and flexible data model.

Security Analytics

Elasticsearch, in combination with other Elastic Stack components, can be used for security analytics, such as monitoring network traffic, detecting anomalies, and identifying potential threats.

PostgreSQL Use Cases

Enterprise applications

PostgreSQL is a popular choice for large-scale enterprise applications due to its reliability, performance, and feature set.

GIS applications

With the PostGIS extension, PostgreSQL can be used for storing and analyzing geospatial data in applications like mapping, routing, and geocoding.

OLTP workloads

As a relational database, PostgreSQL is a good fit for pretty much any application that involves transactional workloads.


Elasticsearch Pricing Model

Elasticsearch is open-source software and can be self-hosted without any licensing fees. However, operational costs, such as hardware, hosting, and maintenance, should be considered. Elasticsearch also offers a managed cloud service called Elastic Cloud, which provides various pricing tiers based on factors like storage, computing resources, and support. Elastic Cloud includes additional features and tools, such as Kibana, machine learning, and security features.

PostgreSQL Pricing Model

PostgreSQL is open source software, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed PostgreSQL server. Several cloud-based managed PostgreSQL services, such as Amazon RDS, Google Cloud SQL, and Azure Database for PostgreSQL, offer different pricing models based on factors like storage, computing resources, and support.