Elasticsearch vs Apache Pinot
A detailed comparison
Compare Elasticsearch and Apache Pinot for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Elasticsearch and Apache Pinot so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Elasticsearch and Apache Pinot perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Elasticsearch vs Apache Pinot Breakdown
Database Model | Distributed search and analytics engine, document-oriented |
Columnar database |
Architecture | Elasticsearch is built on top of Apache Lucene and uses a RESTful API for communication. It stores data in a flexible JSON document format, and the data is automatically indexed for fast search and retrieval. Elasticsearch can be deployed as a single node, in a cluster configuration, or as a managed cloud service (Elastic Cloud) |
Pinot can be deployed on-premises, in the cloud, or using a managed service |
License | Elastic License |
Apache 2.0 |
Use Cases | Full-text search, log and event data analysis, real-time application monitoring, analytics |
Real-time analytics, OLAP, user behavior analytics, clickstream analysis, ad tech, log analytics |
Scalability | Horizontally scalable with support for data sharding, replication, and distributed querying |
Horizontally scalable, supports distributed architectures for high availability and performance |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Elasticsearch Overview
Elasticsearch is an open-source distributed search and analytics engine built on top of Apache Lucene. It was first released in 2010 and has since become popular for its scalability, near real-time search capabilities, and ease of use. Elasticsearch is designed to handle a wide variety of data types, including structured, unstructured, and time-based data. It is often used in conjunction with other tools from the Elastic Stack, such as Logstash for data ingestion and Kibana for data visualization.
Apache Pinot Overview
Apache Pinot is a real-time distributed OLAP datastore, designed to answer complex analytical queries with low latency. It was initially developed at LinkedIn and later open-sourced in 2015. Pinot is well-suited for handling large-scale data and real-time analytics, providing near-instantaneous responses to complex queries on large datasets. It is used by several large organizations, such as LinkedIn, Microsoft, and Uber.
Elasticsearch for Time Series Data
Elasticsearch can be used for time series data storage and analysis, thanks to its distributed architecture, near real-time search capabilities, and support for aggregations. However, it might not be as optimized for time series data as dedicated time series databases. Despite this, Elasticsearch is widely used for log and event data storage and analysis which can be considered time series data.
Apache Pinot for Time Series Data
Apache Pinot is a solid choice for working with time series data due to its columnar storage and real-time ingestion capabilities. Pinot’s ability to ingest data from streams like Apache Kafka ensures that time series data can be analyzed as it is being generated, in addition to having options for bulk ingesting data.
Elasticsearch Key Concepts
- Inverted Index: A data structure used by Elasticsearch to enable fast and efficient full-text searches.
- Cluster: A group of Elasticsearch nodes that work together to distribute data and processing tasks.
- Shard: A partition of an Elasticsearch index that allows data to be distributed across multiple nodes for improved performance and fault tolerance.
Apache Pinot Key Concepts
- Segment: A segment is the basic unit of data storage in Pinot. It is a columnar storage format that contains a subset of the table’s data.
- Table: A table in Pinot is a collection of segments.
- Controller: The controller manages the metadata and orchestrates data ingestion, query execution, and cluster management.
- Broker: The broker is responsible for receiving queries, routing them to the appropriate servers, and returning the results to the client.
- Server: The server stores segments and processes queries on those segments.
Elasticsearch Architecture
Elasticsearch is a distributed, RESTful search and analytics engine that uses a schema-free JSON document data model. It is built on top of Apache Lucene and provides a high-level API for indexing, searching, and analyzing data. Elasticsearch’s architecture is designed to be horizontally scalable, with data distributed across multiple nodes in a cluster. Data is indexed using inverted indices, which enable fast and efficient full-text searches.
Apache Pinot Architecture
Pinot is a distributed, columnar datastore that uses a hybrid data model, combining features of both NoSQL and SQL databases. Its architecture consists of three main components: Controller, Broker, and Server. The Controller manages metadata and cluster operations, while Brokers handle query routing and Servers store and process data. Pinot’s columnar storage format enables efficient compression and quick query processing.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Elasticsearch Features
Full-Text Search
Elasticsearch provides powerful full-text search capabilities with support for complex queries, scoring, and relevance ranking.
Scalability
Elasticsearch’s distributed architecture enables horizontal scalability, allowing it to handle large volumes of data and high query loads.
Aggregations
Elasticsearch supports various aggregation operations, such as sum, average, and percentiles, which are useful for analyzing and summarizing data.
Apache Pinot Features
Real-time Ingestion
Pinot supports real-time data ingestion from Kafka and other streaming sources, allowing for up-to-date analytics.
Scalability
Pinot’s distributed architecture and partitioning capabilities enable horizontal scaling to handle large datasets and high query loads.
Low-latency Query Processing
Pinot’s columnar storage format and various performance optimizations allow for near-instantaneous responses to complex queries.
Elasticsearch Use Cases
Log and Event Data Analysis
Elasticsearch is widely used for storing and analyzing log and event data, such as web server logs, application logs, and network events, to help identify patterns, troubleshoot issues, and monitor system performance.
Full-Text Search
Elasticsearch is a popular choice for implementing full-text search functionality in applications, websites, and content management systems due to its powerful search capabilities and flexible data model.
Security Analytics
Elasticsearch, in combination with other Elastic Stack components, can be used for security analytics, such as monitoring network traffic, detecting anomalies, and identifying potential threats.
Apache Pinot Use Cases
Real-time Analytics
Pinot is designed to support real-time analytics, making it suitable for use cases that require up-to-date insights on large-scale data, such as monitoring and alerting systems, fraud detection, and recommendation engines.
Ad Tech and User Analytics
Apache Pinot is often used in the advertising technology and user analytics space, where low-latency, high-concurrency analytics are crucial for understanding user behavior, optimizing ad campaigns, and personalizing user experiences.
Anomaly Detection and Monitoring
Pinot’s real-time analytics capabilities make it suitable for anomaly detection and monitoring use cases, enabling users to identify unusual patterns or trends in their data and take corrective action as needed.
Elasticsearch Pricing Model
Elasticsearch is open-source software and can be self-hosted without any licensing fees. However, operational costs, such as hardware, hosting, and maintenance, should be considered. Elasticsearch also offers a managed cloud service called Elastic Cloud, which provides various pricing tiers based on factors like storage, computing resources, and support. Elastic Cloud includes additional features and tools, such as Kibana, machine learning, and security features.
Apache Pinot Pricing Model
As an open-source project, Apache Pinot is free to use. However, organizations may incur costs related to hardware, infrastructure, and support when deploying and managing a Pinot cluster. There are no specific pricing options or deployment models tied to Apache Pinot itself.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.