AWS DynamoDB vs OpenTSDB
A detailed comparison
Compare AWS DynamoDB and OpenTSDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of AWS DynamoDB and OpenTSDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how AWS DynamoDB and OpenTSDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
AWS DynamoDB vs OpenTSDB Breakdown
Database Model | Key-value and document store |
Time series database |
Architecture | DynamoDB is a fully managed, serverless NoSQL database provided by Amazon Web Services (AWS). It uses a single-digit millisecond latency for high-performance use cases and supports both key-value and document data models. Data is partitioned and replicated across multiple availability zones within an AWS region, and DynamoDB supports eventual or strong consistency for read operations |
OpenTSDB can be deployed on-premises or in the cloud, with HBase running on a distributed cluster of nodes. |
License | Closed source |
GNU LGPLv2.1 |
Use Cases | Serverless web applications, real-time bidding platforms, gaming leaderboards, IoT data management, high-velocity data processing |
Monitoring, observability, IoT, log data storage |
Scalability | Automatically scales to handle large amounts of read and write throughput, supports on-demand capacity and auto-scaling, global tables for multi-region replication |
Horizontally scalable across multiple nodes using HBase as its storage backend |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
AWS DynamoDB Overview
Amazon DynamoDB is a managed NoSQL database service provided by AWS. It was first introduced in 2012, and it was designed to provide low-latency, high-throughput performance. DynamoDB is built on the principles of the Dynamo paper, which was published by Amazon engineers in 2007, and it aims to offer a highly available, scalable, and distributed key-value store.
OpenTSDB Overview
OpenTSDB (Open Time Series Database) is an open-source, distributed, and scalable time series database built on top of Apache HBase, a NoSQL database. OpenTSDB was designed to address the growing need for storing and processing large volumes of time series data generated by various sources, such as IoT devices, sensors, and monitoring systems. It was initially developed by StumbleUpon in 2010 and later became an independent project with an active community of contributors.
AWS DynamoDB for Time Series Data
DynamoDB can be used with time series data, although it may not be the most optimized solution compared to specialized time series databases. To store time series data in DynamoDB, you can use a composite primary key with a partition key for the entity identifier and a sort key for the timestamp. This allows you to efficiently query data for a specific entity and time range. However, DynamoDB’s main weakness when dealing with time series data is its lack of built-in support for data aggregation and downsampling, which are common requirements for time series analysis. You may need to perform these operations in your application or use additional services like AWS Lambda to process the data.
OpenTSDB for Time Series Data
OpenTSDB is designed for time series data storage and analysis, making it an ideal choice for managing large scale time series datasets. Its architecture enables high write and query performance, and it can handle millions of data points per second with minimal resource consumption. OpenTSDB’s flexible querying capabilities allow users to perform complex analysis on time series data efficiently.
AWS DynamoDB Key Concepts
Some of the key terms and concepts specific to DynamoDB include:
- Tables: In DynamoDB, data is stored in tables, which are containers for items. Each table has a primary key that uniquely identifies each item in the table.
- Items: Items are individual records in a DynamoDB table, and they consist of one or more attributes.
- Attributes: Attributes are key-value pairs that make up an item in a table. DynamoDB supports scalar, document, and set data types for attributes.
- Primary Key: The primary key uniquely identifies each item in a table, and it can be either a single-attribute partition key or a composite partition-sort key.
OpenTSDB Key Concepts
- Data Point: A single measurement in time consisting of a timestamp, metric, value, and associated tags.
- Metric: A named value that represents a specific aspect of a system, such as CPU usage or temperature.
- Tags: Key-value pairs associated with data points that provide metadata and help categorize and query the data.
AWS DynamoDB Architecture
DynamoDB is a NoSQL database that uses a key-value store and document data model. It is designed to provide high availability, durability, and scalability by automatically partitioning data across multiple servers and using replication to ensure fault tolerance. Some of the main components of DynamoDB include:
- Partitioning: DynamoDB automatically partitions data based on the partition key, which ensures that data is evenly distributed across multiple storage nodes.
- Replication: DynamoDB replicates data across multiple availability zones within an AWS region, providing high availability and durability.
- Consistency: DynamoDB offers two consistency models: eventual consistency and strong consistency, allowing you to choose the appropriate level of consistency for your application.
OpenTSDB Architecture
OpenTSDB is built on top of Apache HBase, a distributed and scalable NoSQL database, and relies on its architecture for data storage and management. OpenTSDB stores time series data in HBase tables, with data points organized by metric, timestamp, and tags. The database uses a schema-less data model, which allows for flexibility when adding new metrics and tags. The OpenTSDB architecture also supports horizontal scaling by distributing data across multiple HBase nodes.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
AWS DynamoDB Features
Auto scaling
DynamoDB can automatically scale its read and write capacity based on the workload, allowing you to maintain consistent performance without over-provisioning resources.
Backup and restore
DynamoDB provides built-in support for point-in-time recovery, enabling you to restore your table to a previous state within the last 35 days.
Global tables
DynamoDB global tables enable you to replicate your table across multiple AWS regions, providing low-latency access and data redundancy for global applications.
Streams
DynamoDB Streams capture item-level modifications in your table and can be used to trigger AWS Lambda functions for real-time processing or to synchronize data with other AWS services.
OpenTSDB Features
Scalability
OpenTSDB’s distributed architecture allows for horizontal scaling, ensuring that the database can handle growing volumes of time series data.
Data Compression
OpenTSDB uses various compression techniques to reduce the storage footprint of time series data.
Query Language with time series support
OpenTSDB features a flexible query language that supports aggregation, downsampling, filtering, and other operations for analyzing time series data.
AWS DynamoDB Use Cases
Session management
DynamoDB can be used to store session data for web applications, providing fast and scalable access to session information.
Gaming
DynamoDB can be used to store player data, game state, and other game-related information for online games, providing low-latency and high-throughput performance.
Internet of Things
DynamoDB can be used to store and process sensor data from IoT devices, enabling real-time monitoring and analysis of device data.
OpenTSDB Use Cases
Monitoring and Alerting
OpenTSDB is well-suited for large-scale monitoring and alerting systems that generate vast amounts of time series data from various sources.
IoT Data Storage
OpenTSDB can store and analyze time series data generated by IoT devices, such as sensors and smart appliances, enabling real-time insights and analytics.
Performance Analysis
OpenTSDB’s flexible querying capabilities make it an ideal choice for analyzing system and application performance metrics over time.
AWS DynamoDB Pricing Model
DynamoDB offers two pricing options: provisioned capacity and on-demand capacity. With provisioned capacity, you specify the number of reads and writes per second that you expect your application to require, and you are charged based on the amount of provisioned capacity. This pricing model is suitable for applications with predictable traffic or gradually ramping traffic. You can use auto scaling to adjust your table’s capacity automatically based on the specified utilization rate, ensuring application performance while reducing costs.
On the other hand, with on-demand capacity, you pay per request for the data reads and writes your application performs on your tables. You do not need to specify how much read and write throughput you expect your application to perform, as DynamoDB instantly accommodates your workloads as they ramp up or down. This pricing model is suitable for applications with fluctuating or unpredictable traffic patterns.
OpenTSDB Pricing Model
OpenTSDB is open-source software, which means it is free to use without any licensing fees. However, the cost of running OpenTSDB depends on the infrastructure required to support the underlying HBase database, such as cloud services or on-premises hardware.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.