Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of AWS DynamoDB and TimescaleDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how AWS DynamoDB and TimescaleDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

AWS DynamoDB vs TimescaleDB Breakdown


 
Database Model

Key-value and document store

Time Series Database

Architecture

DynamoDB is a fully managed, serverless NoSQL database provided by Amazon Web Services (AWS). It uses a single-digit millisecond latency for high-performance use cases and supports both key-value and document data models. Data is partitioned and replicated across multiple availability zones within an AWS region, and DynamoDB supports eventual or strong consistency for read operations

TimescaleDB is built on top of PostgreSQL and inherits its architecture. It extends PostgreSQL with time-series-specific optimizations and functions, allowing it to manage time series data efficiently. It can be deployed as a single node, in a multi-node setup, or in the cloud as a managed service.

License

Closed source

Timescale License (for TimescaleDB Community Edition); Apache 2.0 (for core PostgreSQL)

Use Cases

Serverless web applications, real-time bidding platforms, gaming leaderboards, IoT data management, high-velocity data processing

Monitoring, observability, IoT, real-time analytics, financial market data

Scalability

Automatically scales to handle large amounts of read and write throughput, supports on-demand capacity and auto-scaling, global tables for multi-region replication

Horizontally scalable through native support for partitioning, replication, and sharding. Offers multi-node capabilities for distributing data and queries across nodes.

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

AWS DynamoDB Overview

Amazon DynamoDB is a managed NoSQL database service provided by AWS. It was first introduced in 2012, and it was designed to provide low-latency, high-throughput performance. DynamoDB is built on the principles of the Dynamo paper, which was published by Amazon engineers in 2007, and it aims to offer a highly available, scalable, and distributed key-value store.

TimescaleDB Overview

TimescaleDB is an open source time series database built on top of PostgreSQL. It was created to address the challenges of managing time series data, such as scalability, query performance, and data retention policies. TimescaleDB was first released in 2017 and has since become a popular choice for storing and analyzing time series data due to its PostgreSQL compatibility, performance optimizations, and flexible data retention policies.


AWS DynamoDB for Time Series Data

DynamoDB can be used with time series data, although it may not be the most optimized solution compared to specialized time series databases. To store time series data in DynamoDB, you can use a composite primary key with a partition key for the entity identifier and a sort key for the timestamp. This allows you to efficiently query data for a specific entity and time range. However, DynamoDB’s main weakness when dealing with time series data is its lack of built-in support for data aggregation and downsampling, which are common requirements for time series analysis. You may need to perform these operations in your application or use additional services like AWS Lambda to process the data.

TimescaleDB for Time Series Data

TimescaleDB is specifically designed for time series data, making it a natural choice for storing and querying such data. It provides several advantages for time series data management like horizontal scalability, columnar storage, and retention policy support. However, TimescaleDB may not be the best choice for all time series use cases. One example would be if an application requires very high write throughput or real-time analytics, other specialized time series databases like InfluxDB may be more suitable.


AWS DynamoDB Key Concepts

Some of the key terms and concepts specific to DynamoDB include:

  • Tables: In DynamoDB, data is stored in tables, which are containers for items. Each table has a primary key that uniquely identifies each item in the table.
  • Items: Items are individual records in a DynamoDB table, and they consist of one or more attributes.
  • Attributes: Attributes are key-value pairs that make up an item in a table. DynamoDB supports scalar, document, and set data types for attributes.
  • Primary Key: The primary key uniquely identifies each item in a table, and it can be either a single-attribute partition key or a composite partition-sort key.

TimescaleDB Key Concepts

  • Hypertable: A hypertable is a distributed table that is partitioned by time and possibly other dimensions, such as device ID or location. It is the primary abstraction for storing time series data in TimescaleDB and is designed to scale horizontally across multiple nodes.
  • Chunk: A chunk is a partition of a hypertable, containing a subset of the hypertable’s data. Chunks are created automatically by TimescaleDB based on a specified time interval and can be individually compressed, indexed, and backed up for better performance and data management.
  • Distributed Hypertables: For large-scale deployments, TimescaleDB supports distributed hypertables, which partition data across multiple nodes for improved query performance and fault tolerance.


AWS DynamoDB Architecture

DynamoDB is a NoSQL database that uses a key-value store and document data model. It is designed to provide high availability, durability, and scalability by automatically partitioning data across multiple servers and using replication to ensure fault tolerance. Some of the main components of DynamoDB include:

  • Partitioning: DynamoDB automatically partitions data based on the partition key, which ensures that data is evenly distributed across multiple storage nodes.
  • Replication: DynamoDB replicates data across multiple availability zones within an AWS region, providing high availability and durability.
  • Consistency: DynamoDB offers two consistency models: eventual consistency and strong consistency, allowing you to choose the appropriate level of consistency for your application.

TimescaleDB Architecture

TimescaleDB is an extension built on PostgreSQL, inheriting its relational data model and SQL support. However, TimescaleDB extends PostgreSQL with custom data structures and optimizations for time series data, such as hypertables and chunks.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

AWS DynamoDB Features

Auto scaling

DynamoDB can automatically scale its read and write capacity based on the workload, allowing you to maintain consistent performance without over-provisioning resources.

Backup and restore

DynamoDB provides built-in support for point-in-time recovery, enabling you to restore your table to a previous state within the last 35 days.

Global tables

DynamoDB global tables enable you to replicate your table across multiple AWS regions, providing low-latency access and data redundancy for global applications.

Streams

DynamoDB Streams capture item-level modifications in your table and can be used to trigger AWS Lambda functions for real-time processing or to synchronize data with other AWS services.

TimescaleDB Features

Partitioning

TimescaleDB automatically partitions time series data tables using hypertables and chunks, which simplifies data management and improves query performance.

Time series focused SQL functions

TimescaleDB provides several specialized SQL functions and operators for time series data application scenarios, such as time_bucket, first, and last, which simplify querying and aggregating time series data.

Query optimization

As mentioned earlier, TimescaleDB extends PostgreSQL’s query planner for writing and querying time series data, including optimizations like time-based indexing and chunk pruning.


AWS DynamoDB Use Cases

Session management

DynamoDB can be used to store session data for web applications, providing fast and scalable access to session information.

Gaming

DynamoDB can be used to store player data, game state, and other game-related information for online games, providing low-latency and high-throughput performance.

Internet of Things

DynamoDB can be used to store and process sensor data from IoT devices, enabling real-time monitoring and analysis of device data.

TimescaleDB Use Cases

Monitoring and metrics

TimescaleDB is well-suited for storing and analyzing monitoring and metrics data, such as server performance metrics, application logs, and sensor data. Its hypertable structure and query optimizations make it easy to store, query, and visualize large volumes of time series data.

IoT data storage

TimescaleDB can be used to store and analyze IoT data, such as sensor readings and device status information. Its support for automatic partitioning and specialized SQL interfaces simplifies the management and querying of large-scale IoT datasets.

Financial data

TimescaleDB is suitable for storing and analyzing financial data, such as stock prices, exchange rates, and trading volumes. Its query optimizations and specialized SQL functions make it easy to perform time-based aggregations and analyze trends in financial data.


AWS DynamoDB Pricing Model

DynamoDB offers two pricing options: provisioned capacity and on-demand capacity. With provisioned capacity, you specify the number of reads and writes per second that you expect your application to require, and you are charged based on the amount of provisioned capacity. This pricing model is suitable for applications with predictable traffic or gradually ramping traffic. You can use auto scaling to adjust your table’s capacity automatically based on the specified utilization rate, ensuring application performance while reducing costs.

On the other hand, with on-demand capacity, you pay per request for the data reads and writes your application performs on your tables. You do not need to specify how much read and write throughput you expect your application to perform, as DynamoDB instantly accommodates your workloads as they ramp up or down. This pricing model is suitable for applications with fluctuating or unpredictable traffic patterns.

TimescaleDB Pricing Model

TimescaleDB is available in two editions: TimescaleDB Open Source and TimescaleDB Cloud. The open-source edition is free to use and can be self-hosted, while the cloud edition is a managed service with a pay-as-you-go pricing model based on storage, compute, and data transfer usage. TimescaleDB Cloud offers various pricing tiers with different levels of resources and features, such as continuous backups and high availability.