Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of DuckDB and M3 so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how DuckDB and M3 perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

DuckDB vs M3 Breakdown


 
Database Model

Columnar database

Time series database

Architecture

DuckDB is intended for use as an embedded database and is primariliy focused on single node performance.

The M3 stack can be deployed on-premises or in the cloud, using containerization technologies like Kubernetes or as a managed service on platforms like AWS or GCP

License

MIT

Apache 2.0

Use Cases

Embedded analytics, Data Science, Data processing, ETL pipelines

Monitoring, observability, IoT, Real-time analytics, large-scale metrics processing

Scalability

Embedded and single-node focused, with limited support for parallelism

Horizontally scalable, designed for high availability and large-scale deployments

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

DuckDB Overview

DuckDB is an in-process SQL OLAP (Online Analytical Processing) database management system. It is designed to be simple, fast, and feature-rich. DuckDB can be used for processing and analyzing tabular datasets, such as CSV or Parquet files. It provides a rich SQL dialect with support for transactions, persistence, extensive SQL queries, and direct querying of Parquet and CSV files. DuckDB is built with a vectorized engine that is optimized for analytics and supports parallel query processing. It is designed to be easy to install and use, with no external dependencies and support for multiple programming languages.

M3 Overview

M3 is a distributed time series database written entirely in Go. It is designed to collect a high volume of monitoring time series data, distribute storage in a horizontally scalable manner, and efficiently leverage hardware resources. M3 was initially developed by Uber as a scalable remote storage backend for Prometheus and Graphite and later open-sourced for broader use.


DuckDB for Time Series Data

DuckDB can be used effectively with time series data. It supports processing and analyzing tabular datasets, which can include time series data stored in CSV or Parquet files. With its optimized analytics engine and support for complex SQL queries, DuckDB can perform aggregations, joins, and other time series analysis operations efficiently. However, it’s important to note that DuckDB is not specifically designed for time series data management and may not have specialized features tailored for time series analysis like some dedicated time series databases.

M3 for Time Series Data

M3 is specifically designed for time-series data. It is a distributed and scalable time-series database optimized for handling large volumes of high-resolution data points, making it an ideal solution for storing, querying, and analyzing time-series data.

M3’s architecture focuses on providing fast and efficient querying capabilities, as well as high ingestion rates, which are essential for working with time-series data. Its horizontal scalability and high availability ensure that it can handle the demands of large-scale deployments and maintain performance as data volumes grow.


DuckDB Key Concepts

  • In-process: DuckDB operates in-process, meaning it runs within the same process as the application using it, without the need for a separate server.
  • OLAP: DuckDB is an OLAP database, which means it is optimized for analytical query processing.
  • Vectorized engine: DuckDB utilizes a vectorized engine that operates on batches of data, improving query performance.
  • Transactions: DuckDB supports transactional operations, ensuring the atomicity, consistency, isolation, and durability (ACID) properties of data operations.
  • SQL dialect: DuckDB provides a rich SQL dialect with advanced features such as arbitrary and nested correlated subqueries, window functions, collations, and support for complex types like arrays and structs

M3 Key Concepts

  • Time Series Compression: M3 has the ability to compress time series data, resulting in significant memory and disk savings. It uses two compression algorithms, M3TSZ and protobuf encoding, to achieve efficient data compression.
  • Sharding: M3 uses virtual shards that are assigned to physical nodes. Timeseries keys are hashed to a fixed set of virtual shards, making horizontal scaling and node management seamless.
  • Consistency Levels: M3 provides variable consistency levels for read and write operations, as well as cluster connection operations. Write consistency levels include One (success of a single node), Majority (success of the majority of nodes), and All (success of all nodes). Read consistency level is One, which corresponds to reading from a single nod


DuckDB Architecture

DuckDB follows an in-process architecture, running within the same process as the application. It is a relational table-oriented database management system that supports SQL queries for producing analytical results. DuckDB is built using C++11 and is designed to have no external dependencies. It can be compiled as a single file, making it easy to install and integrate into applications.

M3 Architecture

M3 is designed to be horizontally scalable and handle high data throughput. It uses fileset files as the primary unit of long-term storage, storing compressed streams of time series values. These files are flushed to disk after a block time window becomes unreachable. M3 has a commit log, equivalent to the commit log or write-ahead-log in other databases, which ensures data integrity. Client Peer streaming is responsible for fetching blocks from peers for bootstrapping purposes. M3 also implements caching policies to optimize efficient reads by determining which flushed blocks are kept in memory.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

DuckDB Features

Transactions and Persistence

DuckDB supports transactional operations, ensuring data integrity and durability. It allows for persistent storage of data between sessions.

Extensive SQL Support

DuckDB provides a rich SQL dialect with support for advanced query features, including correlated subqueries, window functions, and complex data types.

Direct Parquet & CSV Querying

DuckDB allows direct querying of Parquet and CSV files, enabling efficient analysis of data stored in these formats.

Fast Analytical Queries

DuckDB is designed to run analytical queries efficiently, thanks to its vectorized engine and optimization for analytics workloads.

Parallel Query Processing

DuckDB can process queries in parallel, taking advantage of multi-core processors to improve query performance.

M3 Features

Commit Log

M3 uses a commit log to ensure data integrity, providing durability for write operations.

Peer Streaming

M3’s client peer streaming fetches data blocks from peers for bootstrapping purposes, optimizing data retrieval and distribution.

Caching Mechanisms

M3 implements various caching policies to efficiently manage memory usage, keeping frequently accessed data blocks in memory for faster reads.


DuckDB Use Cases

Processing and Storing Tabular Datasets

DuckDB is well-suited for scenarios where you need to process and store tabular datasets, such as data imported from CSV or Parquet files. It provides efficient storage and retrieval mechanisms for working with structured data.

Interactive Data Analysis

DuckDB is ideal for interactive data analysis tasks, particularly when dealing with large tables. It enables you to perform complex operations like joining and aggregating multiple large tables efficiently, allowing for rapid exploration and extraction of insights from your data.

Large Result Set Transfer to Client

When you need to transfer large result sets from the database to the client application, DuckDB can be a suitable choice. Its optimized query processing and efficient data transfer mechanisms enable fast and seamless retrieval of large amounts of data.

M3 Use Cases

Monitoring and Observability

M3 is particularly suitable for large-scale monitoring and observability tasks, as it can store and manage massive volumes of time-series data generated by infrastructure, applications, and microservices. Organizations can use M3 to analyze, visualize, and detect anomalies in the metrics collected from various sources, enabling them to identify potential issues and optimize their systems.

IoT and Sensor Data

M3 can be used to store and process the vast amounts of time-series data generated by IoT devices and sensors. By handling data from millions of devices and sensors, M3 can provide organizations with valuable insights into the performance, usage patterns, and potential issues of their connected devices. This information can be used for optimization, predictive maintenance, and improving the overall efficiency of IoT systems.

Financial Data Analysis

Financial organizations can use M3 to store and analyze time-series data related to stocks, bonds, commodities, and other financial instruments. By providing fast and efficient querying capabilities, M3 can help analysts and traders make more informed decisions based on historical trends, current market conditions, and potential future developments.


DuckDB Pricing Model

DuckDB is a free and open-source database management system released under the permissive MIT License. It can be freely used, modified, and distributed without any licensing costs.

M3 Pricing Model

M3 is an open source database and can be used freely, although you will have to account for the cost of managing your infrastructure and the hardware used to run M3. Chronosphere is the co-maintainer of M3 along with Uber and also offers a hosted observability that uses M3 as the backend storage layer.