Apache Druid vs Snowflake
A detailed comparison
Compare Apache Druid and Snowflake for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Druid and Snowflake so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Druid and Snowflake perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Druid vs Snowflake Breakdown
Database Model | Columnar database |
Cloud data warehouse |
Architecture | Druid can be deployed on-premises, in the cloud, or using a managed service |
Snowflake can be deployed across multiple cloud providers, including AWS, Azure, and Google Cloud |
License | Apache 2.0 |
Closed source |
Use Cases | Real-time analytics, OLAP, time series data, event-driven data, log analytics, ad tech, user behavior analytics |
Big data analytics, Data warehousing, Data engineering, Data sharing, Machine learning |
Scalability | Horizontally scalable, supports distributed architectures for high availability and performance |
Highly scalable with multi-cluster shared data architecture, automatic scaling, and performance isolation |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Druid Overview
Apache Druid is an open-source, real-time analytics database designed for high-performance querying and data ingestion. Originally developed by Metamarkets in 2011 and later donated to the Apache Software Foundation in 2018, Druid has gained popularity for its ability to handle large volumes of data with low latency. With a unique architecture that combines elements of time series databases, search systems, and columnar storage, Druid is particularly well-suited for use cases involving event-driven data and interactive analytics.
Snowflake Overview
Snowflake is a cloud-based data warehousing platform that was founded in 2012 and officially launched in 2014. It is designed to enable organizations to efficiently store, process, and analyze large volumes of structured and semi-structured data. Snowflake’s unique architecture separates storage, compute, and cloud services, allowing users to independently scale and optimize each component.
Apache Druid for Time Series Data
Apache Druid is designed for real time analytics and can be a good fit for working with time series data that needs to be analyzed quickly after being written. Druid also offers integrations for storing historical data in cheaper object storage so historical time series data can also be analyzed using Druid.
Snowflake for Time Series Data
While Snowflake is not specifically designed for time series data, it can still effectively store, process, and analyze such data due to its scalable and flexible architecture. Snowflake’s columnar storage format, combined with its powerful query engine and support for SQL, makes it a suitable option for time series data analysis.
Apache Druid Key Concepts
- Data Ingestion: The process of importing data into Druid from various sources, such as streaming or batch data sources.
- Segments: The smallest unit of data storage in Druid, segments are immutable, partitioned, and compressed.
- Data Rollup: The process of aggregating raw data during ingestion to reduce storage requirements and improve query performance.
- Nodes: Druid’s architecture consists of different types of nodes, including Historical, Broker, Coordinator, and MiddleManager/Overlord, each with specific responsibilities.
- Indexing Service: Druid’s indexing service manages the process of ingesting data, creating segments, and publishing them to deep storage.
Snowflake Key Concepts
- Virtual Warehouse: A compute resource in Snowflake that processes queries and performs data loading and unloading. Virtual Warehouses can be independently scaled up or down based on demand.
- Micro-Partition: A storage unit in Snowflake that contains a subset of the data in a table. Micro-partitions are automatically optimized for efficient querying.
- Time Travel: A feature in Snowflake that allows users to query historical data at specific points in time or within a specific time range.
- Data Sharing: The ability to securely share data between Snowflake accounts, without the need to copy or transfer the data.
Apache Druid Architecture
Apache Druid is a powerful distributed data store designed for real-time analytics on large datasets. Within its architecture, several core components play pivotal roles in ensuring its efficiency and scalability. Here is an overview of the core components that power Apache Druid.
- Historical Nodes are fundamental to Druid’s data-serving capabilities. Their primary responsibility is to serve stored data to queries. To achieve this, they load segments from deep storage, retain them in memory, and then cater to the queries on these segments. When considering deployment and management, these nodes are typically stationed on machines endowed with significant memory and CPU resources. Their scalability is evident as they can be expanded horizontally simply by incorporating more nodes.
- Broker Nodes act as the gatekeepers for incoming queries. Their main function is to channel these queries to the appropriate historical nodes or real-time nodes. Intriguingly, they are stateless, which means they can be scaled out to accommodate an increase in query concurrency.
- Coordinator Nodes have a managerial role, overseeing the data distribution across historical nodes. Their decisions on which segments to load or drop are based on specific configurable rules. In terms of deployment, a Druid setup usually requires just one active coordinator node, with a backup node on standby for failover scenarios.
- Overlord Nodes dictate the assignment of ingestion tasks, directing them to either middle manager or indexer nodes. Their deployment mirrors that of the coordinator nodes, with typically one active overlord and a backup for redundancy.
- MiddleManager and Indexer Nodes are the workhorses of data ingestion in Druid. While MiddleManagers initiate short-lived tasks for data ingestion, indexers are designed for long-lived tasks. Given their intensive operations, these nodes demand high CPU and memory resources. Their scalability is flexible, allowing horizontal expansion based on the volume of data ingestion.
- Deep Storage is a component that serves as Druid’s persistent storage unit. Druid integrates with various blob storage solutions like HDFS, S3, and Google Cloud Storage.
- Metadata Storage is the repository for crucial metadata about segments, tasks, and configurations. Druid is compatible with popular databases for this purpose, including MySQL, PostgreSQL, and Derby.
Snowflake Architecture
Snowflake’s architecture separates storage, compute, and cloud services, allowing users to scale and optimize each component independently. The platform uses a columnar storage format and supports ANSI SQL for querying and data manipulation. Snowflake is built on top of AWS, Azure, and GCP, providing a fully managed, elastic, and secure data warehouse solution. Key components of the Snowflake architecture include databases, tables, virtual warehouses, and micro-partitions.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Druid Features
Data Ingestion
Apache Druid supports both real-time and batch data ingestion, allowing it to process data from various sources like Kafka, Hadoop, or local files. With built-in support for data partitioning, replication, and roll-up, Druid ensures high availability and efficient storage.
Scalability and Performance
Druid is designed to scale horizontally, providing support for large-scale deployments with minimal performance degradation. Its unique architecture allows for fast and efficient querying, making it suitable for use cases requiring low-latency analytics.
Columnar Storage
Druid stores data in a columnar format, enabling better compression and faster query performance compared to row-based storage systems. Columnar storage also allows Druid to optimize queries by only accessing relevant columns.
Time-optimized Indexing
Druid’s indexing service creates segments with time-based partitioning, optimizing data storage and retrieval for time-series data. This feature significantly improves query performance for time-based queries. Data Rollups
Druid’s data rollup feature aggregates raw data during ingestion, reducing storage requirements and improving query performance. This feature is particularly beneficial for use cases involving high-cardinality data or large volumes of similar data points.
Snowflake Features
Elasticity
Snowflake’s architecture allows for independent scaling of storage and compute resources, enabling users to quickly adjust to changing workloads and demands.
Fully Managed
Snowflake is a fully managed service, eliminating the need for users to manage infrastructure, software updates, or backups.
Security
Snowflake provides comprehensive security features, including encryption at rest and in transit, multi-factor authentication, and fine-grained access control.
Data Sharing
Snowflake enables secure data sharing between accounts without the need to copy or transfer data.
Apache Druid Use Cases
Geospatial Analysis
Apache Druid provides support for geospatial data and queries, making it suitable for use cases that involve location-based data, such as tracking the movement of assets, analyzing user locations, or monitoring the distribution of events. Its ability to efficiently process large volumes of geospatial data enables users to gain insights and make data-driven decisions based on location information.
Machine Learning and AI
Druid’s high-performance data processing capabilities can be leveraged for preprocessing and feature extraction in machine learning and AI workflows. Its support for real-time data ingestion and low-latency querying make it suitable for use cases that require real-time predictions or insights, such as recommendation systems or predictive maintenance.
Real-Time Analytics
Apache Druid’s low-latency querying and real-time data ingestion capabilities make it an ideal solution for real-time analytics use cases, such as monitoring application performance, user behavior, or business metrics.
Snowflake Use Cases
Data Warehousing
Snowflake provides a scalable, secure, and fully managed data warehousing solution, making it suitable for organizations that need to store, process, and analyze large volumes of structured and semi-structured data.
Data Lake
Snowflake can serve as a data lake for ingesting and storing large volumes of raw, unprocessed data, which can be later transformed and analyzed as needed.
Data Integration and ETL
Snowflake’s support for SQL and various data loading and unloading options makes it a good choice for data integration and ETL
Apache Druid Pricing Model
Apache Druid is an open source project, and as such, it can be self-hosted at no licensing cost. However, organizations that choose to self-host Druid will incur expenses related to infrastructure, management, and support when deploying and operating Druid in their environment. These costs will depend on the organization’s specific requirements and the chosen infrastructure, whether it’s on-premises or cloud-based.
For those who prefer a managed solution, there are cloud services available that offer Apache Druid as a managed service, such as Imply Cloud. With managed services, the provider handles infrastructure, management, and support, simplifying the deployment and operation of Druid. Pricing for these managed services will vary depending on the provider and the selected service tier, which may include factors such as data storage, query capacity, and data ingestion rates.
Snowflake Pricing Model
Snowflake offers a pay-as-you-go pricing model, with separate charges for storage and compute resources. Storage is billed on a per-terabyte, per-month basis, while compute resources are billed based on usage, measured in Snowflake Credits. Snowflake offers various editions, including Standard, Enterprise, Business Critical, and Virtual Private Snowflake, each with different features and pricing options. Users can also opt for on-demand or pre-purchased, discounted Snowflake Credits.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.