Apache Druid vs Rockset
A detailed comparison
Compare Apache Druid and Rockset for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Druid and Rockset so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Druid and Rockset perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Druid vs Rockset Breakdown
Database Model | Columnar database |
Real time database |
Architecture | Druid can be deployed on-premises, in the cloud, or using a managed service |
Rockset is a real-time analytics database built for modern cloud applications, designed to enable developers to create real-time, event-driven applications and run complex queries on structured, semi-structured, and unstructured data with low-latency. Rockset uses a cloud-native, distributed architecture that separates storage and compute, allowing for horizontal scalability and efficient resource utilization. Data is automatically indexed and served by a distributed, auto-scaled set of query processing nodes. |
License | Apache 2.0 |
Closed source |
Use Cases | Real-time analytics, OLAP, time series data, event-driven data, log analytics, ad tech, user behavior analytics |
Real-time analytics, event-driven applications, search and aggregations, personalized user experiences, IoT data analysis |
Scalability | Horizontally scalable, supports distributed architectures for high availability and performance |
Horizontally scalable with distributed storage and compute |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Druid Overview
Apache Druid is an open-source, real-time analytics database designed for high-performance querying and data ingestion. Originally developed by Metamarkets in 2011 and later donated to the Apache Software Foundation in 2018, Druid has gained popularity for its ability to handle large volumes of data with low latency. With a unique architecture that combines elements of time series databases, search systems, and columnar storage, Druid is particularly well-suited for use cases involving event-driven data and interactive analytics.
Rockset Overview
Rockset is a real-time indexing database designed for fast, efficient querying of structured and semi-structured data. Founded in 2016 by former Facebook engineers, Rockset aims to provide a serverless search and analytics solution that enables users to build powerful applications and data-driven products without the complexities of traditional database management.
Apache Druid for Time Series Data
Apache Druid is designed for real time analytics and can be a good fit for working with time series data that needs to be analyzed quickly after being written. Druid also offers integrations for storing historical data in cheaper object storage so historical time series data can also be analyzed using Druid.
Rockset for Time Series Data
Rockset’s real-time indexing and low-latency querying capabilities make it an excellent choice for time series data analysis. Its schemaless ingestion and support for complex data types enable effortless handling of time series data, while its Converged Index ensures efficient querying of both historical and real-time data. Rockset is particularly suitable for applications that demand real-time analytics, such as IoT monitoring and anomaly detection.
Apache Druid Key Concepts
- Data Ingestion: The process of importing data into Druid from various sources, such as streaming or batch data sources.
- Segments: The smallest unit of data storage in Druid, segments are immutable, partitioned, and compressed.
- Data Rollup: The process of aggregating raw data during ingestion to reduce storage requirements and improve query performance.
- Nodes: Druid’s architecture consists of different types of nodes, including Historical, Broker, Coordinator, and MiddleManager/Overlord, each with specific responsibilities.
- Indexing Service: Druid’s indexing service manages the process of ingesting data, creating segments, and publishing them to deep storage.
Rockset Key Concepts
- Converged Index: Rockset uses a unique indexing approach that combines both an inverted index and a columnar index, allowing the database to optimize for both search and analytics use cases.
- Schemaless Ingestion: Rockset automatically infers schema on ingestion, making it easy to work with semi-structured data formats like JSON.
- Virtual Instances: Rockset uses the concept of virtual instances to provide isolation and resource allocation to different workloads, ensuring predictable performance.
Apache Druid Architecture
Apache Druid is a powerful distributed data store designed for real-time analytics on large datasets. Within its architecture, several core components play pivotal roles in ensuring its efficiency and scalability. Here is an overview of the core components that power Apache Druid.
- Historical Nodes are fundamental to Druid’s data-serving capabilities. Their primary responsibility is to serve stored data to queries. To achieve this, they load segments from deep storage, retain them in memory, and then cater to the queries on these segments. When considering deployment and management, these nodes are typically stationed on machines endowed with significant memory and CPU resources. Their scalability is evident as they can be expanded horizontally simply by incorporating more nodes.
- Broker Nodes act as the gatekeepers for incoming queries. Their main function is to channel these queries to the appropriate historical nodes or real-time nodes. Intriguingly, they are stateless, which means they can be scaled out to accommodate an increase in query concurrency.
- Coordinator Nodes have a managerial role, overseeing the data distribution across historical nodes. Their decisions on which segments to load or drop are based on specific configurable rules. In terms of deployment, a Druid setup usually requires just one active coordinator node, with a backup node on standby for failover scenarios.
- Overlord Nodes dictate the assignment of ingestion tasks, directing them to either middle manager or indexer nodes. Their deployment mirrors that of the coordinator nodes, with typically one active overlord and a backup for redundancy.
- MiddleManager and Indexer Nodes are the workhorses of data ingestion in Druid. While MiddleManagers initiate short-lived tasks for data ingestion, indexers are designed for long-lived tasks. Given their intensive operations, these nodes demand high CPU and memory resources. Their scalability is flexible, allowing horizontal expansion based on the volume of data ingestion.
- Deep Storage is a component that serves as Druid’s persistent storage unit. Druid integrates with various blob storage solutions like HDFS, S3, and Google Cloud Storage.
- Metadata Storage is the repository for crucial metadata about segments, tasks, and configurations. Druid is compatible with popular databases for this purpose, including MySQL, PostgreSQL, and Derby.
Rockset Architecture
Rockset uses a cloud-native, serverless architecture that is built on top of a distributed, shared-nothing system. It is a NoSQL database, which allows for greater flexibility and scalability compared to traditional relational databases. The core components of Rockset’s architecture include the Ingestion Service, Storage Service, and Query Service. The Ingestion Service is responsible for ingesting data from various sources, while the Storage Service maintains the Converged Index. The Query Service processes queries and provides APIs for developers to interact with the database.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Druid Features
Data Ingestion
Apache Druid supports both real-time and batch data ingestion, allowing it to process data from various sources like Kafka, Hadoop, or local files. With built-in support for data partitioning, replication, and roll-up, Druid ensures high availability and efficient storage.
Scalability and Performance
Druid is designed to scale horizontally, providing support for large-scale deployments with minimal performance degradation. Its unique architecture allows for fast and efficient querying, making it suitable for use cases requiring low-latency analytics.
Columnar Storage
Druid stores data in a columnar format, enabling better compression and faster query performance compared to row-based storage systems. Columnar storage also allows Druid to optimize queries by only accessing relevant columns.
Time-optimized Indexing
Druid’s indexing service creates segments with time-based partitioning, optimizing data storage and retrieval for time-series data. This feature significantly improves query performance for time-based queries. Data Rollups
Druid’s data rollup feature aggregates raw data during ingestion, reducing storage requirements and improving query performance. This feature is particularly beneficial for use cases involving high-cardinality data or large volumes of similar data points.
Rockset Features
Serverless Scaling
Rockset automatically scales resources based on the workload, which means users don’t need to manage any infrastructure or capacity planning. ### Full-Text Search Rockset’s Converged Index supports full-text search, making it an ideal choice for applications that require advanced search capabilities. ### Integration with BI tools Rockset provides native integrations with popular business intelligence (BI) tools like Tableau, Looker, and Redash, allowing users to visualize and analyze their data without any additional setup.
Apache Druid Use Cases
Geospatial Analysis
Apache Druid provides support for geospatial data and queries, making it suitable for use cases that involve location-based data, such as tracking the movement of assets, analyzing user locations, or monitoring the distribution of events. Its ability to efficiently process large volumes of geospatial data enables users to gain insights and make data-driven decisions based on location information.
Machine Learning and AI
Druid’s high-performance data processing capabilities can be leveraged for preprocessing and feature extraction in machine learning and AI workflows. Its support for real-time data ingestion and low-latency querying make it suitable for use cases that require real-time predictions or insights, such as recommendation systems or predictive maintenance.
Real-Time Analytics
Apache Druid’s low-latency querying and real-time data ingestion capabilities make it an ideal solution for real-time analytics use cases, such as monitoring application performance, user behavior, or business metrics.
Rockset Use Cases
Real-Time Analytics
Rockset’s low-latency querying and real-time ingestion capabilities make it ideal for building real-time analytics dashboards for applications like IoT monitoring, social media analysis, and log analytics.
Full-Text Search
With its Converged Index and support for advanced search features, Rockset is an excellent choice for building full-text search applications, such as product catalogs or document search systems.
Machine Learning
Rockset’s ability to ingest and query large-scale, semi-structured data in real-time makes it a suitable choice for machine learning applications.
Apache Druid Pricing Model
Apache Druid is an open source project, and as such, it can be self-hosted at no licensing cost. However, organizations that choose to self-host Druid will incur expenses related to infrastructure, management, and support when deploying and operating Druid in their environment. These costs will depend on the organization’s specific requirements and the chosen infrastructure, whether it’s on-premises or cloud-based.
For those who prefer a managed solution, there are cloud services available that offer Apache Druid as a managed service, such as Imply Cloud. With managed services, the provider handles infrastructure, management, and support, simplifying the deployment and operation of Druid. Pricing for these managed services will vary depending on the provider and the selected service tier, which may include factors such as data storage, query capacity, and data ingestion rates.
Rockset Pricing Model
Rockset offers a usage-based pricing model that charges customers for the amount of data ingested, the number of virtual instances, and the volume of queries executed. The pricing model is designed to be transparent and flexible, allowing users to only pay for the resources they consume. Rockset also provides a free tier with limited resources for developers to explore the platform. Users can choose between on-demand and reserved instances, depending on their needs.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.