Apache Doris vs Redis
A detailed comparison
Compare Apache Doris and Redis for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Doris and Redis so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Doris and Redis perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Doris vs Redis Breakdown
Database Model | Data warehouse |
In-memory database |
Architecture | Doris can be deployed on-premises or in the cloud and is compatible with various data formats such as Parquet, ORC, and JSON. |
Redis can be deployed on-premises, in the cloud, or as a managed service |
License | Apache 2.0 |
BSD 3 |
Use Cases | Interactive analytics, data warehousing, real-time data analysis, reporting, dashboarding |
Caching, message brokering, real-time analytics, session storage, geospatial data processing |
Scalability | Horizontally scalable with distributed storage and compute |
Horizontally scalable via partitioning and clustering, supports data replication |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Doris Overview
Apache Doris is an MPP-based interactive SQL data warehousing system designed for reporting and analysis. It is known for its high performance, real-time analytics capabilities, and ease of use. Apache Doris integrates technologies from Google Mesa and Apache Impala. Unlike other SQL-on-Hadoop systems, Doris is designed to be a simple and tightly coupled system that does not rely on external dependencies. It aims to provide a streamlined and efficient solution for data warehousing and analytics.
Redis Overview
Redis, which stands for Remote Dictionary Server, is an open-source, in-memory data structure store that can be used as a database, cache, and message broker. It was created by Salvatore Sanfilippo in 2009 and has since gained significant popularity due to its high performance and flexibility. Redis supports various data structures, such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, and geospatial indexes with radius queries.
Apache Doris for Time Series Data
Apache Doris can be effectively used with time series data for real-time analytics and reporting. With its high performance and sub-second response time, Doris can handle massive amounts of time-stamped data and provide timely query results. It supports both high-concurrent point query scenarios and high-throughput complex analysis scenarios, making it suitable for analyzing time series data with varying levels of complexity.
Redis for Time Series Data
Redis has a dedicated module for working with time series data called RedisTimeSeries. RedisTimeSeries offers functionality like downsampling, data retention policies, and specialized queries for time series data in Redis. Being an in-memory database, Redis will be very fast for reading and writing time series data, but due to the cost of RAM compared to disk using Redis could become expensive depending on the size of your dataset. If your use case doesn’t require extremely fast response times, you could save money by going with a more traditional time series database.
Apache Doris Key Concepts
- MPP (Massively Parallel Processing): Apache Doris leverages MPP architecture, which allows it to distribute data processing across multiple nodes, enabling parallel execution and scalability.
- SQL: Apache Doris supports SQL as the query language, providing a familiar and powerful interface for data analysis and reporting.
- Point Query: Point query refers to retrieving a specific data point or a small subset of data from the database.
- Complex Analysis: Apache Doris can handle complex analysis scenarios that involve processing large volumes of data and performing advanced computations and aggregations.
Redis Key Concepts
- In-memory store: Redis stores data in memory, which allows for faster data access and manipulation compared to disk-based databases .
- Data structures: Redis supports a wide range of data structures, including strings, hashes, lists, sets, and more, which provide flexibility in how data is modeled and stored.
- Persistence: Redis offers optional data persistence, allowing data to be periodically saved to disk or written to a log for durability.
- Pub/Sub: Redis provides a publish/subscribe messaging system, enabling real-time communication between clients without the need for a centralized message broker.
Apache Doris Architecture
Apache Doris is based on MPP architecture, which enables it to distribute data and processing across multiple nodes for parallel execution. It is a standalone system and does not depend on other systems or frameworks. Apache Doris combines the technology of Google Mesa and Apache Impala to provide a simple and tightly coupled system for data warehousing and analytics. It leverages SQL as the query language and supports efficient data processing and query optimization techniques to ensure high performance and scalability.
Redis Architecture
Redis is a NoSQL database that uses a key-value data model, where each key is associated with a value stored as one of Redis’ supported data structures. The database is single-threaded, which simplifies its internal architecture and reduces contention. Redis can be deployed as a standalone server, a cluster, or a master-replica setup for scalability and high availability. The Redis Cluster mode automatically shards data across multiple nodes, providing data partitioning and fault tolerance.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Doris Features
High Performance
Apache Doris is designed for high-performance data analytics, delivering sub-second query response times even with massive amounts of data.
Real-Time Analytics
Apache Doris enables real-time data analysis, allowing users to gain insights and make informed decisions based on up-to-date information.
Scalability
Apache Doris can scale horizontally by adding more nodes to the cluster, allowing for increased data storage and processing capacity.
Redis Features
Atomicity
Redis supports atomic operations on complex data types, allowing developers to perform powerful operations without worrying about race conditions or other concurrent processing issues.
Broad data structure support
Redis supports a range of data structures such as lists, sets, sorted sets, hashes, bitmaps, hyperloglog, and geospatial indexes. This flexibility allows developers to use Redis for a wide variety of tasks by using data structures that are optimized for their data in terms of performance characteristics.
Pub/Sub messaging
Redis provides a publish/subscribe messaging system for real-time communication between clients.
Lua Scripting
Developers can run Lua scripts in the Redis server, enabling complex operations to be executed atomically in the server itself, reducing network round trips.
Apache Doris Use Cases
Real-Time Analytics
Apache Doris is well-suited for real-time analytics scenarios where timely insights and analysis of large volumes of data are crucial. It enables businesses to monitor and analyze real-time data streams, make data-driven decisions, and detect patterns or anomalies in real time.
Reporting and Business Intelligence
Apache Doris can be used for generating reports and conducting business intelligence activities. It supports fast and efficient querying of data, allowing users to extract meaningful insights and visualize data for reporting and analysis purposes.
Data Warehousing
Apache Doris is suitable for building data warehousing solutions that require high-performance analytics and querying capabilities. It provides a scalable and efficient platform for storing, managing, and analyzing large volumes of data for reporting and decision-making.
Redis Use Cases
Caching
Redis is often used as a cache to store frequently accessed data and reduce the load on other databases or services, improving application performance and reducing latency.
Task queues
Redis can be used to implement task queues, which are useful for managing tasks that take longer to process and should be executed asynchronously. This is particularly common in web applications, where background tasks can be processed independently of the request/response cycle
Real-time analysis and machine learning
Redis’ high performance and low-latency data access make it suitable for real-time analysis and machine learning applications, such as processing streaming data, media streaming, and handling time-series data. This can be achieved using Redis’ data structures and capabilities like sorted sets, timestamps, and pub/sub messaging.
Apache Doris Pricing Model
As an open-source project, Apache Doris is freely available for usage and does not require any licensing fees. Users can download the source code and set up Apache Doris on their own infrastructure without incurring any direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.
Redis Pricing Model
Redis is open-source software, which means it can be deployed and used freely on your own infrastructure. However, there are also managed Redis services available, such as Redis Enterprise which offer additional features, support, and ease of deployment. Pricing for these services typically depends on factors like the size of the instance, data storage, and data transfer.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.