Apache Doris vs QuestDB
A detailed comparison
Compare Apache Doris and QuestDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Doris and QuestDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Doris and QuestDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Doris vs QuestDB Breakdown
Database Model | Data warehouse |
Time series database |
Architecture | Doris can be deployed on-premises or in the cloud and is compatible with various data formats such as Parquet, ORC, and JSON. |
QuestDB is designed for horizontal scaling, enabling you to distribute data and queries across multiple nodes for increased performance and availability. It can be deployed on-premises, in the cloud, or as a hybrid solution, depending on your infrastructure needs and preferences. |
License | Apache 2.0 |
Apache 2.0 |
Use Cases | Interactive analytics, data warehousing, real-time data analysis, reporting, dashboarding |
Monitoring, observability, IoT, Real-time analytics, Financial services, High-frequency trading |
Scalability | Horizontally scalable with distributed storage and compute |
High-performance with support for horizontal scaling and multi-threading |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Doris Overview
Apache Doris is an MPP-based interactive SQL data warehousing system designed for reporting and analysis. It is known for its high performance, real-time analytics capabilities, and ease of use. Apache Doris integrates technologies from Google Mesa and Apache Impala. Unlike other SQL-on-Hadoop systems, Doris is designed to be a simple and tightly coupled system that does not rely on external dependencies. It aims to provide a streamlined and efficient solution for data warehousing and analytics.
QuestDB Overview
QuestDB is an open-source relational column-oriented database designed specifically for time series and event data. It combines high-performance ingestion capabilities with SQL analytics, making it a powerful tool for managing and analyzing large volumes of time-based data. QuestDB addresses the challenges of handling high throughput and provides a simple way to analyze ingested data through SQL queries. It is well-suited for use cases such as financial market data and application metrics.
Apache Doris for Time Series Data
Apache Doris can be effectively used with time series data for real-time analytics and reporting. With its high performance and sub-second response time, Doris can handle massive amounts of time-stamped data and provide timely query results. It supports both high-concurrent point query scenarios and high-throughput complex analysis scenarios, making it suitable for analyzing time series data with varying levels of complexity.
QuestDB for Time Series Data
QuestDB excels in managing and analyzing time series data. With its high-performance ingestion capabilities, it can handle high data throughput, making it suitable for real-time data ingestion scenarios. QuestDB’s SQL extensions for time series enable users to perform real-time analytics and gain valuable insights from their time-stamped data. Whether it’s financial market data or application metrics, QuestDB simplifies the process of ingesting and analyzing time series data through its fast SQL queries and operational simplicity.
Apache Doris Key Concepts
- MPP (Massively Parallel Processing): Apache Doris leverages MPP architecture, which allows it to distribute data processing across multiple nodes, enabling parallel execution and scalability.
- SQL: Apache Doris supports SQL as the query language, providing a familiar and powerful interface for data analysis and reporting.
- Point Query: Point query refers to retrieving a specific data point or a small subset of data from the database.
- Complex Analysis: Apache Doris can handle complex analysis scenarios that involve processing large volumes of data and performing advanced computations and aggregations.
QuestDB Key Concepts
- Time Series: QuestDB focuses on time series data, which represents data points indexed by time. It is optimized for storing and processing time-stamped data efficiently.
- Column-Oriented: QuestDB employs a column-oriented storage format, where data is organized and stored column by column rather than row by row. This format enables efficient compression and faster query performance.
- SQL Extensions: QuestDB extends the SQL language with functionalities specifically tailored for time series data. These extensions facilitate real-time analytics and allow users to leverage familiar SQL constructs for querying time-based data.
Apache Doris Architecture
Apache Doris is based on MPP architecture, which enables it to distribute data and processing across multiple nodes for parallel execution. It is a standalone system and does not depend on other systems or frameworks. Apache Doris combines the technology of Google Mesa and Apache Impala to provide a simple and tightly coupled system for data warehousing and analytics. It leverages SQL as the query language and supports efficient data processing and query optimization techniques to ensure high performance and scalability.
QuestDB Architecture
QuestDB follows a hybrid architecture that combines features of columnar and row-based databases. It leverages a column-oriented storage format for efficient compression and query performance while retaining the ability to handle relational data with SQL capabilities. QuestDB supports both SQL and NoSQL-like functionalities, providing users with flexibility in their data modeling and querying approaches. The database consists of multiple components, including the ingestion engine, storage engine, and query engine, working together to ensure high-performance data ingestion and retrieval.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Doris Features
High Performance
Apache Doris is designed for high-performance data analytics, delivering sub-second query response times even with massive amounts of data.
Real-Time Analytics
Apache Doris enables real-time data analysis, allowing users to gain insights and make informed decisions based on up-to-date information.
Scalability
Apache Doris can scale horizontally by adding more nodes to the cluster, allowing for increased data storage and processing capacity.
QuestDB Features
High-Performance Ingestion
QuestDB is optimized for high throughput ingestion, allowing users to efficiently ingest large volumes of time series data at high speeds.
Fast SQL Queries
QuestDB provides fast SQL queries for analyzing time series data. It extends the SQL language with time series-specific functionalities to assist with real-time analytics.
Operational Simplicity
QuestDB aims to provide a user-friendly experience with operational simplicity. It supports schema-agnostic ingestion using popular protocols such as InfluxDB line protocol and PostgreSQL wire protocol. Additionally, a REST API is available for bulk imports and exports, simplifying data management tasks.
Apache Doris Use Cases
Real-Time Analytics
Apache Doris is well-suited for real-time analytics scenarios where timely insights and analysis of large volumes of data are crucial. It enables businesses to monitor and analyze real-time data streams, make data-driven decisions, and detect patterns or anomalies in real time.
Reporting and Business Intelligence
Apache Doris can be used for generating reports and conducting business intelligence activities. It supports fast and efficient querying of data, allowing users to extract meaningful insights and visualize data for reporting and analysis purposes.
Data Warehousing
Apache Doris is suitable for building data warehousing solutions that require high-performance analytics and querying capabilities. It provides a scalable and efficient platform for storing, managing, and analyzing large volumes of data for reporting and decision-making.
QuestDB Use Cases
Financial Market Data
QuestDB is well-suited for managing and analyzing financial market data. Its high-performance ingestion and fast SQL queries enable efficient processing and analysis of large volumes of market data in real time.
Application Metrics
QuestDB can be used for collecting and analyzing application metrics. Its ability to handle high data throughput and provide real-time analytics capabilities makes it suitable for monitoring and analyzing performance metrics, logs, and other application-related data.
IoT Data Analysis
QuestDB’s high-performance ingestion and time series analytics capabilities make it a valuable tool for analyzing IoT sensor data.
Apache Doris Pricing Model
As an open-source project, Apache Doris is freely available for usage and does not require any licensing fees. Users can download the source code and set up Apache Doris on their own infrastructure without incurring any direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.
QuestDB Pricing Model
QuestDB is an open-source project released under the Apache 2 License. It is freely available for usage and does not require any licensing fees. Users can access the source code on GitHub and deploy QuestDB on their own infrastructure without incurring direct costs. QuestDB also offers a managed cloud service.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.