Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Doris and OSI PI Data Historian so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Apache Doris and OSI PI Data Historian perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Apache Doris vs OSI PI Data Historian Breakdown


 
Database Model

Data warehouse

Time series database/data historian

Architecture

Doris can be deployed on-premises or in the cloud and is compatible with various data formats such as Parquet, ORC, and JSON.

OSIsoft PI System is a suite of software products designed for real-time data collection, storage, and analysis of time series data in industrial environments. The PI System is built around the PI Server, which stores, processes, and serves data to clients, and it can be deployed on-premises or in the cloud.

License

Apache 2.0

Closed source

Use Cases

Interactive analytics, data warehousing, real-time data analysis, reporting, dashboarding

Industrial data management, real-time monitoring, asset health tracking, predictive maintenance, energy management

Scalability

Horizontally scalable with distributed storage and compute

Supports horizontal scaling through distributed architecture, data replication, and data federation for large-scale deployments

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Apache Doris Overview

Apache Doris is an MPP-based interactive SQL data warehousing system designed for reporting and analysis. It is known for its high performance, real-time analytics capabilities, and ease of use. Apache Doris integrates technologies from Google Mesa and Apache Impala. Unlike other SQL-on-Hadoop systems, Doris is designed to be a simple and tightly coupled system that does not rely on external dependencies. It aims to provide a streamlined and efficient solution for data warehousing and analytics.

OSI PI Data Historian Overview

OSI PI, also known as OSIsoft PI System, is an enterprise-level data management and analytics platform specifically designed for handling time series data from industrial processes, sensors, and other sources. Developed by OSIsoft (acquired by AVEVA in 2021), the PI System has been widely used in various industries such as energy, manufacturing, utilities, and pharmaceuticals since its introduction in the 1980s. It provides the ability to collect, store, analyze, and visualize large volumes of time series data in real-time, allowing organizations to gain insights, optimize processes, and improve decision-making.


Apache Doris for Time Series Data

Apache Doris can be effectively used with time series data for real-time analytics and reporting. With its high performance and sub-second response time, Doris can handle massive amounts of time-stamped data and provide timely query results. It supports both high-concurrent point query scenarios and high-throughput complex analysis scenarios, making it suitable for analyzing time series data with varying levels of complexity.

OSI PI Data Historian for Time Series Data

OSI PI was created for storing time series data, making it an ideal choice for organizations that need to manage large volumes of sensor and process data. Its architecture and components are optimized for collecting, storing, and analyzing time series data with high efficiency and minimal latency. The PI System’s scalability and performance make it a suitable solution for organizations dealing with vast amounts of data generated by industrial processes, IoT devices, or other sources.


Apache Doris Key Concepts

  • MPP (Massively Parallel Processing): Apache Doris leverages MPP architecture, which allows it to distribute data processing across multiple nodes, enabling parallel execution and scalability.
  • SQL: Apache Doris supports SQL as the query language, providing a familiar and powerful interface for data analysis and reporting.
  • Point Query: Point query refers to retrieving a specific data point or a small subset of data from the database.
  • Complex Analysis: Apache Doris can handle complex analysis scenarios that involve processing large volumes of data and performing advanced computations and aggregations.

OSI PI Data Historian Key Concepts

  • PI Server: The core component of the PI System, responsible for data collection, storage, and management.
  • PI Interfaces and PI Connectors: Software components that collect data from various sources and send it to the PI Server.
  • PI Asset Framework: A modeling framework that allows users to create a hierarchical structure of assets and their associated metadata, making it easier to understand and analyze data.
  • PI DataLink: An add-in for Microsoft Excel that enables users to access and analyze PI System data directly from Excel.
  • PI ProcessBook: A visualization tool for creating interactive, graphical displays of PI System data.


Apache Doris Architecture

Apache Doris is based on MPP architecture, which enables it to distribute data and processing across multiple nodes for parallel execution. It is a standalone system and does not depend on other systems or frameworks. Apache Doris combines the technology of Google Mesa and Apache Impala to provide a simple and tightly coupled system for data warehousing and analytics. It leverages SQL as the query language and supports efficient data processing and query optimization techniques to ensure high performance and scalability.

OSI PI Data Historian Architecture

OSI PI is a data management platform built around the PI Server, which is responsible for data collection, storage, and management. The PI System uses a highly efficient, proprietary time series database to store data. PI Interfaces and PI Connectors collect data from various sources and send it to the PI Server. The PI Asset Framework (AF) allows users to model their assets and their associated data in a hierarchical structure, making it easier to understand and analyze the data. Various client tools, such as PI DataLink and PI ProcessBook, enable users to access and visualize data stored in the PI System.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Apache Doris Features

High Performance

Apache Doris is designed for high-performance data analytics, delivering sub-second query response times even with massive amounts of data.

Real-Time Analytics

Apache Doris enables real-time data analysis, allowing users to gain insights and make informed decisions based on up-to-date information.

Scalability

Apache Doris can scale horizontally by adding more nodes to the cluster, allowing for increased data storage and processing capacity.

OSI PI Data Historian Features

Data collection and storage

OSI PI’s PI Interfaces and PI Connectors enable seamless data collection from a wide variety of sources, while the PI Server efficiently stores and manages the data.

Scalability

The PI System is highly scalable, allowing organizations to handle large volumes of data and a growing number of data sources without compromising performance.

Asset modeling

The PI Asset Framework (AF) provides a powerful way to model assets and their associated data, making it easier to understand and analyze complex industrial processes.

Data visualization

Tools like PI DataLink and PI ProcessBook enable users to analyze and visualize data stored in the PI System, facilitating better decision-making and process optimization.


Apache Doris Use Cases

Real-Time Analytics

Apache Doris is well-suited for real-time analytics scenarios where timely insights and analysis of large volumes of data are crucial. It enables businesses to monitor and analyze real-time data streams, make data-driven decisions, and detect patterns or anomalies in real time.

Reporting and Business Intelligence

Apache Doris can be used for generating reports and conducting business intelligence activities. It supports fast and efficient querying of data, allowing users to extract meaningful insights and visualize data for reporting and analysis purposes.

Data Warehousing

Apache Doris is suitable for building data warehousing solutions that require high-performance analytics and querying capabilities. It provides a scalable and efficient platform for storing, managing, and analyzing large volumes of data for reporting and decision-making.

OSI PI Data Historian Use Cases

Process optimization

OSI PI can help organizations identify inefficiencies, monitor performance, and optimize their industrial processes by providing real-time insights into time series data from sensors and other sources.

Predictive maintenance

By analyzing historical data and detecting patterns or anomalies, OSI PI enables organizations to implement predictive maintenance strategies, reducing equipment downtime and maintenance costs.

Energy management

OSI PI can be used to track energy consumption across various assets and processes, allowing organizations to identify areas for improvement and implement energy-saving measures.


Apache Doris Pricing Model

As an open-source project, Apache Doris is freely available for usage and does not require any licensing fees. Users can download the source code and set up Apache Doris on their own infrastructure without incurring any direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.

OSI PI Data Historian Pricing Model

Pricing for OSI PI is typically based on a combination of factors such as the number of data sources, the number of users, and the level of support required. Pricing details are not publicly available, as they are provided on a quote basis depending on the specific needs of the organization.