Apache Doris vs Mimir
A detailed comparison
Compare Apache Doris and Mimir for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Doris and Mimir so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Doris and Mimir perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Doris vs Mimir Breakdown
Database Model | Data warehouse |
Time series database |
Architecture | Doris can be deployed on-premises or in the cloud and is compatible with various data formats such as Parquet, ORC, and JSON. |
Grafana Mimir is a time series database designed for high-performance, real-time monitoring, and analytics. It features a distributed architecture, allowing for horizontal scaling across multiple nodes to handle large volumes of data and queries. It can be deployed on-prem due to being open source or as a managed solution hosted by Grafana |
License | Apache 2.0 |
APGL 3.0 |
Use Cases | Interactive analytics, data warehousing, real-time data analysis, reporting, dashboarding |
Monitoring, observability, IoT |
Scalability | Horizontally scalable with distributed storage and compute |
Horizontally scalable |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Doris Overview
Apache Doris is an MPP-based interactive SQL data warehousing system designed for reporting and analysis. It is known for its high performance, real-time analytics capabilities, and ease of use. Apache Doris integrates technologies from Google Mesa and Apache Impala. Unlike other SQL-on-Hadoop systems, Doris is designed to be a simple and tightly coupled system that does not rely on external dependencies. It aims to provide a streamlined and efficient solution for data warehousing and analytics.
Mimir Overview
Grafana Mimir is an open-source software project that provides a scalable long-term storage solution for Prometheus. Started at Grafana Labs and announced in 2022, Grafana Mimir aims to become the most scalable and performant open-source time series database for metrics. The project incorporates the knowledge and experience gained by Grafana Labs engineers from running Grafana Enterprise Metrics and Grafana Cloud Metrics at massive scale.
Apache Doris for Time Series Data
Apache Doris can be effectively used with time series data for real-time analytics and reporting. With its high performance and sub-second response time, Doris can handle massive amounts of time-stamped data and provide timely query results. It supports both high-concurrent point query scenarios and high-throughput complex analysis scenarios, making it suitable for analyzing time series data with varying levels of complexity.
Mimir for Time Series Data
Grafana Mimir is well-suited for handling time series data, making it a suitable choice for scenarios involving metric storage and analysis. It provides long-term storage capabilities for Prometheus, a popular open-source monitoring and alerting system. With Grafana Mimir, users can store and query time series metrics over extended periods, allowing for historical analysis and trend detection. It is especially useful for applications that require scalable and performant storage of time series data for metrics monitoring and observability purposes.
Apache Doris Key Concepts
- MPP (Massively Parallel Processing): Apache Doris leverages MPP architecture, which allows it to distribute data processing across multiple nodes, enabling parallel execution and scalability.
- SQL: Apache Doris supports SQL as the query language, providing a familiar and powerful interface for data analysis and reporting.
- Point Query: Point query refers to retrieving a specific data point or a small subset of data from the database.
- Complex Analysis: Apache Doris can handle complex analysis scenarios that involve processing large volumes of data and performing advanced computations and aggregations.
Mimir Key Concepts
- Metrics: In Grafana Mimir, metrics represent the measurements or observations tracked over time. They can include various types of data, such as system metrics, application performance metrics, or sensor data.
- Long-term Storage: Grafana Mimir provides a storage solution specifically tailored for long-term retention of time series data, allowing users to store and query historical metrics over extended periods.
- Microservices: Grafana Mimir adopts a microservices-based architecture, where the system consists of multiple horizontally scalable microservices that can operate independently and in parallel.
Apache Doris Architecture
Apache Doris is based on MPP architecture, which enables it to distribute data and processing across multiple nodes for parallel execution. It is a standalone system and does not depend on other systems or frameworks. Apache Doris combines the technology of Google Mesa and Apache Impala to provide a simple and tightly coupled system for data warehousing and analytics. It leverages SQL as the query language and supports efficient data processing and query optimization techniques to ensure high performance and scalability.
Mimir Architecture
Grafana Mimir adopts a microservices-based architecture, where the system comprises multiple horizontally scalable microservices. These microservices can operate independently and in parallel, allowing for efficient distribution of workload and scalability. Grafana Mimir’s components are compiled into a single binary, providing a unified and cohesive system. The architecture is designed to be highly available and multi-tenant, enabling multiple users and applications to utilize the database concurrently. This distributed architecture ensures scalability and resilience in handling large-scale metric storage and retrieval scenarios.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Doris Features
High Performance
Apache Doris is designed for high-performance data analytics, delivering sub-second query response times even with massive amounts of data.
Real-Time Analytics
Apache Doris enables real-time data analysis, allowing users to gain insights and make informed decisions based on up-to-date information.
Scalability
Apache Doris can scale horizontally by adding more nodes to the cluster, allowing for increased data storage and processing capacity.
Mimir Features
Scalability
Grafana Mimir is designed to scale horizontally, enabling the system to handle growing data volumes and increasing workloads. Its horizontally scalable microservices architecture allows for seamless expansion and improved performance.
High Availability
Grafana Mimir provides high availability by ensuring redundancy and fault tolerance. It allows for replication and distribution of data across multiple nodes, ensuring data durability and continuous availability of stored metrics.
Long-term Storage
Grafana Mimir offers a dedicated solution for long-term storage of time series metrics. It provides efficient storage and retrieval mechanisms, allowing users to retain and analyze historical metric data over extended periods.
Apache Doris Use Cases
Real-Time Analytics
Apache Doris is well-suited for real-time analytics scenarios where timely insights and analysis of large volumes of data are crucial. It enables businesses to monitor and analyze real-time data streams, make data-driven decisions, and detect patterns or anomalies in real time.
Reporting and Business Intelligence
Apache Doris can be used for generating reports and conducting business intelligence activities. It supports fast and efficient querying of data, allowing users to extract meaningful insights and visualize data for reporting and analysis purposes.
Data Warehousing
Apache Doris is suitable for building data warehousing solutions that require high-performance analytics and querying capabilities. It provides a scalable and efficient platform for storing, managing, and analyzing large volumes of data for reporting and decision-making.
Mimir Use Cases
Metrics Monitoring and Observability
Grafana Mimir is well-suited for monitoring and observability use cases. It enables the storage and analysis of time series metrics, allowing users to monitor the performance, health, and behavior of their systems and applications in real-time.
Long Term Metric Storage
With its focus on providing scalable long-term storage, Grafana Mimir is ideal for applications that require retaining and analyzing historical metric data over extended periods. It allows users to store and query large volumes of time series data generated by Prometheus.
Trend and anomaly detection
By using Mimir for storing long term historical data it can be useful for detecting trends in your metrics and also for comparing current metrics to historical data to detect outliers and anomalies
Apache Doris Pricing Model
As an open-source project, Apache Doris is freely available for usage and does not require any licensing fees. Users can download the source code and set up Apache Doris on their own infrastructure without incurring any direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.
Mimir Pricing Model
Grafana Mimir is an open-source project, which means it is freely available for usage and does not require any licensing fees. Users can download the source code and deploy Grafana Mimir on their own infrastructure without incurring direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.