Apache Doris vs Elasticsearch
A detailed comparison
Compare Apache Doris and Elasticsearch for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Doris and Elasticsearch so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Doris and Elasticsearch perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Doris vs Elasticsearch Breakdown
Database Model | Data warehouse |
Distributed search and analytics engine, document-oriented |
Architecture | Doris can be deployed on-premises or in the cloud and is compatible with various data formats such as Parquet, ORC, and JSON. |
Elasticsearch is built on top of Apache Lucene and uses a RESTful API for communication. It stores data in a flexible JSON document format, and the data is automatically indexed for fast search and retrieval. Elasticsearch can be deployed as a single node, in a cluster configuration, or as a managed cloud service (Elastic Cloud) |
License | Apache 2.0 |
Elastic License |
Use Cases | Interactive analytics, data warehousing, real-time data analysis, reporting, dashboarding |
Full-text search, log and event data analysis, real-time application monitoring, analytics |
Scalability | Horizontally scalable with distributed storage and compute |
Horizontally scalable with support for data sharding, replication, and distributed querying |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Doris Overview
Apache Doris is an MPP-based interactive SQL data warehousing system designed for reporting and analysis. It is known for its high performance, real-time analytics capabilities, and ease of use. Apache Doris integrates technologies from Google Mesa and Apache Impala. Unlike other SQL-on-Hadoop systems, Doris is designed to be a simple and tightly coupled system that does not rely on external dependencies. It aims to provide a streamlined and efficient solution for data warehousing and analytics.
Elasticsearch Overview
Elasticsearch is an open-source distributed search and analytics engine built on top of Apache Lucene. It was first released in 2010 and has since become popular for its scalability, near real-time search capabilities, and ease of use. Elasticsearch is designed to handle a wide variety of data types, including structured, unstructured, and time-based data. It is often used in conjunction with other tools from the Elastic Stack, such as Logstash for data ingestion and Kibana for data visualization.
Apache Doris for Time Series Data
Apache Doris can be effectively used with time series data for real-time analytics and reporting. With its high performance and sub-second response time, Doris can handle massive amounts of time-stamped data and provide timely query results. It supports both high-concurrent point query scenarios and high-throughput complex analysis scenarios, making it suitable for analyzing time series data with varying levels of complexity.
Elasticsearch for Time Series Data
Elasticsearch can be used for time series data storage and analysis, thanks to its distributed architecture, near real-time search capabilities, and support for aggregations. However, it might not be as optimized for time series data as dedicated time series databases. Despite this, Elasticsearch is widely used for log and event data storage and analysis which can be considered time series data.
Apache Doris Key Concepts
- MPP (Massively Parallel Processing): Apache Doris leverages MPP architecture, which allows it to distribute data processing across multiple nodes, enabling parallel execution and scalability.
- SQL: Apache Doris supports SQL as the query language, providing a familiar and powerful interface for data analysis and reporting.
- Point Query: Point query refers to retrieving a specific data point or a small subset of data from the database.
- Complex Analysis: Apache Doris can handle complex analysis scenarios that involve processing large volumes of data and performing advanced computations and aggregations.
Elasticsearch Key Concepts
- Inverted Index: A data structure used by Elasticsearch to enable fast and efficient full-text searches.
- Cluster: A group of Elasticsearch nodes that work together to distribute data and processing tasks.
- Shard: A partition of an Elasticsearch index that allows data to be distributed across multiple nodes for improved performance and fault tolerance.
Apache Doris Architecture
Apache Doris is based on MPP architecture, which enables it to distribute data and processing across multiple nodes for parallel execution. It is a standalone system and does not depend on other systems or frameworks. Apache Doris combines the technology of Google Mesa and Apache Impala to provide a simple and tightly coupled system for data warehousing and analytics. It leverages SQL as the query language and supports efficient data processing and query optimization techniques to ensure high performance and scalability.
Elasticsearch Architecture
Elasticsearch is a distributed, RESTful search and analytics engine that uses a schema-free JSON document data model. It is built on top of Apache Lucene and provides a high-level API for indexing, searching, and analyzing data. Elasticsearch’s architecture is designed to be horizontally scalable, with data distributed across multiple nodes in a cluster. Data is indexed using inverted indices, which enable fast and efficient full-text searches.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Doris Features
High Performance
Apache Doris is designed for high-performance data analytics, delivering sub-second query response times even with massive amounts of data.
Real-Time Analytics
Apache Doris enables real-time data analysis, allowing users to gain insights and make informed decisions based on up-to-date information.
Scalability
Apache Doris can scale horizontally by adding more nodes to the cluster, allowing for increased data storage and processing capacity.
Elasticsearch Features
Full-Text Search
Elasticsearch provides powerful full-text search capabilities with support for complex queries, scoring, and relevance ranking.
Scalability
Elasticsearch’s distributed architecture enables horizontal scalability, allowing it to handle large volumes of data and high query loads.
Aggregations
Elasticsearch supports various aggregation operations, such as sum, average, and percentiles, which are useful for analyzing and summarizing data.
Apache Doris Use Cases
Real-Time Analytics
Apache Doris is well-suited for real-time analytics scenarios where timely insights and analysis of large volumes of data are crucial. It enables businesses to monitor and analyze real-time data streams, make data-driven decisions, and detect patterns or anomalies in real time.
Reporting and Business Intelligence
Apache Doris can be used for generating reports and conducting business intelligence activities. It supports fast and efficient querying of data, allowing users to extract meaningful insights and visualize data for reporting and analysis purposes.
Data Warehousing
Apache Doris is suitable for building data warehousing solutions that require high-performance analytics and querying capabilities. It provides a scalable and efficient platform for storing, managing, and analyzing large volumes of data for reporting and decision-making.
Elasticsearch Use Cases
Log and Event Data Analysis
Elasticsearch is widely used for storing and analyzing log and event data, such as web server logs, application logs, and network events, to help identify patterns, troubleshoot issues, and monitor system performance.
Full-Text Search
Elasticsearch is a popular choice for implementing full-text search functionality in applications, websites, and content management systems due to its powerful search capabilities and flexible data model.
Security Analytics
Elasticsearch, in combination with other Elastic Stack components, can be used for security analytics, such as monitoring network traffic, detecting anomalies, and identifying potential threats.
Apache Doris Pricing Model
As an open-source project, Apache Doris is freely available for usage and does not require any licensing fees. Users can download the source code and set up Apache Doris on their own infrastructure without incurring any direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.
Elasticsearch Pricing Model
Elasticsearch is open-source software and can be self-hosted without any licensing fees. However, operational costs, such as hardware, hosting, and maintenance, should be considered. Elasticsearch also offers a managed cloud service called Elastic Cloud, which provides various pricing tiers based on factors like storage, computing resources, and support. Elastic Cloud includes additional features and tools, such as Kibana, machine learning, and security features.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.