Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Datadog and MongoDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Datadog and MongoDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Datadog vs MongoDB Breakdown


 
Database Model

Cloud observability platform

Document database

Architecture

Cloud-based SaaS platform

MongoDB uses a flexible, JSON-like document model for storing data, which allows for dynamic schema changes without downtime. It supports ad hoc queries, indexing, and real-time aggregation. MongoDB can be deployed as a standalone server, in a replica set configuration for high availability, or as a sharded cluster for horizontal scaling. It is also available as a managed cloud service called MongoDB Atlas, which provides additional features like automated backups, monitoring, and global distribution.

License

Close source

SSPL for community edition, commercial licenses for other versions

Use Cases

Infrastructure monitoring, application performance monitoring, log management

Content management systems, mobile applications, real-time analytics, IoT data management, e-commerce platforms

Scalability

Horizontally scalable with built-in support for multi-cloud and global deployments.

Horizontally scalable with support for data sharding, replication, and automatic load balancing

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Datadog Overview

Datadog is a monitoring and analytics platform that integrates and automates infrastructure monitoring, application performance monitoring (APM), and log management to provide unified, real-time observability of an organization’s entire technology stack. Founded in 2010, Datadog has rapidly become a go-to solution for cloud-scale monitoring, offering SaaS-based capabilities that enable businesses to improve agility, increase efficiency, and provide end-to-end visibility across dynamic, high-scale infrastructures.

MongoDB Overview

MongoDB is a popular, open-source NoSQL database launched in 2009. Designed to handle large volumes of unstructured and semi-structured data, MongoDB offers a flexible, schema-less data model, horizontal scalability, and high performance. Its ease of use, JSON-based document storage, and support for a wide range of programming languages have contributed to its widespread adoption across various industries and applications.


Datadog for Time Series Data

Datadog excels in handling time series data through its metrics-based architecture. It is optimized for collecting and analyzing data points over time, such as CPU usage, memory consumption, or request latency. While Datadog is not a dedicated time series database, it integrates features like long-term data retention, aggregation, and visualization that make it well-suited for monitoring time-dependent metrics. However, it might not be the ideal choice for massive-scale, real-time analytics compared to specialized time series databases like InfluxDB.

MongoDB for Time Series Data

Although MongoDB is a general-purpose NoSQL database, it can be used for storing and processing time series data. The flexible data model of MongoDB allows for easy adaptation to the evolving structure of time series data, such as the addition of new metrics or the modification of existing ones. MongoDB provides built-in support for time-to-live (TTL) indexes, which automatically expire old data after a specified time period, making it suitable for managing large volumes of time series data with a limited storage capacity. MongoDB has also recently added a custom columnar storage engine and time series collection for time series use cases, meant to improve performance over the default MongoDB storage engine in terms of data compression and query performance.


Datadog Key Concepts

  • Datadog Agent: The Datadog Agent is a lightweight software installed on your servers, containers, or endpoints to collect and report metrics, logs, and traces. It acts as the primary bridge between your systems and the Datadog platform.
  • Dashboards: Dashboards in Datadog provide a customizable interface to visualize metrics, logs, and traces. They support various widgets, including time-series graphs, gauges, and heat maps, to present data in a meaningful way.
  • Integration : Datadog supports over 600 integrations to connect with various technologies, such as databases, cloud providers, and container orchestrators. Each integration collects relevant metrics, logs, and events and may require specific configuration via the Agent.
  • Events: Events are data that are streamed to Datadog via Agents, integrations, or custom applications. They are streamed to Datadog and can be used for filtering and correlating what is happening in your application
  • Tagging : Tags are metadata assigned to metrics, logs, and traces to group, filter, and search data. Effective use of tags, such as environment, region, or service, is crucial for organizing and analyzing data efficiently.

MongoDB Key Concepts

Some key terminology and concepts specific to MongoDB include:

  • Database: A MongoDB database is a container for collections, which are groups of related documents.
  • Collection: A collection in MongoDB is analogous to a table in relational databases, holding a set of documents.
  • Document: A document in MongoDB is a single record, stored in a JSON-like format called BSON (Binary JSON). Documents within a collection can have different structures.
  • Field: A field is a key-value pair within a document, similar to an attribute or column in a relational database.
  • Index: An index in MongoDB is a data structure that improves the query performance on specific fields within a collection.


Datadog Architecture

Datadog employs a SaaS (Software-as-a-Service) model with a highly distributed, cloud-based architecture. It uses agents to collect data from various sources, which are then processed and stored in Datadog’s cloud. The platform supports both structured and unstructured data, and its backend utilizes modern distributed systems principles to ensure scalability and reliability. Key components include the data ingestion pipeline, a metrics store, a logs processing system, and a query engine.

MongoDB Architecture

MongoDB’s architecture is centered around its flexible, document-based data model. As a NoSQL database, MongoDB supports a schema-less structure, which allows for the storage and querying of diverse data types, such as nested arrays and documents. MongoDB can be deployed as a standalone server, a replica set, or a sharded cluster. Replica sets provide high availability through automatic failover and data redundancy, while sharded clusters enable horizontal scaling and load balancing by distributing data across multiple servers based on a shard key.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Datadog Features

Real-time dashboards

Datadog offers customizable, real-time dashboards that enable users to monitor a variety of metrics, traces, and logs all in one place. This centralized view aids in quick issue detection and resolution. These dashboards are interactive, enabling drilling down into granular details, facilitating precise troubleshooting and root cause analysis.

Automated alerts

Automated alerts in Datadog can notify teams of any issues or anomalies in real-time. These alerts can be fine-tuned to avoid noise and false positives, ensuring that only actionable insights get attention. They can also be integrated with third-party communication tools like Slack or PagerDuty for a seamless incident response.

Synthetic monitoring

Datadog’s synthetic monitoring allows users to simulate user transactions and monitor uptime, latency, and functionality of applications. This feature ensures that critical endpoints remain available and performant.

MongoDB Features

Flexible Data Model

MongoDB’s schema-less data model allows for the storage and querying of diverse data types, making it well-suited for handling complex and evolving data structures.

High Availability

MongoDB’s replica set feature ensures high availability through automatic failover and data redundancy.

Horizontal Scalability

MongoDB’s sharded cluster architecture enables horizontal scaling and load balancing, allowing it to handle large-scale data processing and querying.


Datadog Use Cases

Infrastructure monitoring

One of the primary use-cases for Datadog is real-time infrastructure monitoring. Businesses can keep tabs on servers, containers, databases, and more, all in one place. The comprehensive coverage helps teams quickly identify performance bottlenecks or availability issues, thereby minimizing downtime and enhancing system reliability.

Application performance monitoring

Datadog’s APM capabilities enable organizations to trace requests as they traverse through various services and components of an application. This is essential for microservices architectures where understanding the interactions between services can be complex. It helps in identifying slow services that could be affecting the application’s overall performance.

Security monitoring

Datadog assists organizations in monitoring security-related events by collecting logs and metrics from various sources. It helps in detecting unusual activities, unauthorized access, and potential threats. By correlating data across the stack, security teams can investigate incidents more effectively. Datadog’s compliance monitoring features support adherence to standards like PCI DSS, HIPAA, and GDPR.

MongoDB Use Cases

Content Management Systems

MongoDB’s flexible data model makes it an ideal choice for content management systems, which often require the ability to store and manage diverse content types, such as articles, images, and videos. The schema-less nature of MongoDB allows for easy adaptation to changing content structures and requirements.

IoT Data Storage and Analytics

MongoDB’s support for high data volumes and horizontal scalability makes it suitable for storing and processing data generated by IoT devices, such as sensor readings and device logs. Its ability to index and query data efficiently allows for real-time analytics and monitoring of IoT devices.

E-commerce Platforms

MongoDB’s flexibility and performance features make it an excellent choice for e-commerce platforms, where diverse product information, customer data, and transaction records need to be stored and queried efficiently. The flexible data model enables easy adaptation to changes in product attributes and customer preferences, while the high availability and scalability features ensure a smooth and responsive user experience.


Datadog Pricing Model

Datadog uses a modular, usage-based pricing model where customers pay based on the specific products and volume of data they use. Pricing is typically divided among different products like Infrastructure Monitoring, APM, Logs, and more. Each product has its own pricing structure, often based on the number of hosts, instances, or data ingested. Datadog offers a Free tier with limited features and data caps, as well as Pro and Enterprise tiers that provide advanced features and higher limits.

MongoDB Pricing Model

MongoDB offers various pricing options, including a free, open-source Community Edition and a commercial Enterprise Edition, which includes advanced features, management tools, and support. MongoDB Inc. also offers a fully managed cloud-based database-as-a-service, MongoDB Atlas, with a pay-as-you-go pricing model based on storage, data transfer, and compute resources. MongoDB Atlas offers a free tier with limited resources for users who want to try the service without incurring costs.