DataBend vs OpenTSDB
A detailed comparison
Compare DataBend and OpenTSDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of DataBend and OpenTSDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how DataBend and OpenTSDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
DataBend vs OpenTSDB Breakdown
Database Model | Data warehouse |
Time series database |
Architecture | DataBend can be run on your own infrastructure or using a managed service. It is designed as a cloud native system and is built to take advantage of many of the services available in cloud providers like AWS, Google Cloud, and Azure. |
OpenTSDB can be deployed on-premises or in the cloud, with HBase running on a distributed cluster of nodes. |
License | Apache 2.0 |
GNU LGPLv2.1 |
Use Cases | Data analytics, Data warehousing, Real-time analytics, Big data processing |
Monitoring, observability, IoT, log data storage |
Scalability | Horizontally scalable with support for distributed computing |
Horizontally scalable across multiple nodes using HBase as its storage backend |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
DataBend Overview
DataBend is an open-source, cloud-native data processing and analytics platform designed to provide high-performance, cost-effective, and scalable solutions for big data workloads. The project is driven by a community of developers, researchers, and industry professionals aiming to create a unified data processing platform that combines batch and streaming processing capabilities with advanced analytical features. DataBend’s flexible architecture allows users to build a wide range of applications, from real-time analytics to large-scale data warehousing.
OpenTSDB Overview
OpenTSDB (Open Time Series Database) is an open-source, distributed, and scalable time series database built on top of Apache HBase, a NoSQL database. OpenTSDB was designed to address the growing need for storing and processing large volumes of time series data generated by various sources, such as IoT devices, sensors, and monitoring systems. It was initially developed by StumbleUpon in 2010 and later became an independent project with an active community of contributors.
DataBend for Time Series Data
DataBend’s architecture and processing capabilities make it a suitable choice for working with time series data. Its support for both batch and streaming data processing allows users to ingest, store, and analyze time series data at scale. Additionally, DataBend’s integration with Apache Arrow and its powerful query execution framework enable efficient querying and analytics on time series data, making it a versatile choice for applications that require real-time insights and analytics.
OpenTSDB for Time Series Data
OpenTSDB is designed for time series data storage and analysis, making it an ideal choice for managing large scale time series datasets. Its architecture enables high write and query performance, and it can handle millions of data points per second with minimal resource consumption. OpenTSDB’s flexible querying capabilities allow users to perform complex analysis on time series data efficiently.
DataBend Key Concepts
- DataFusion: DataFusion is a core component of DataBend, providing an extensible query execution framework that supports both SQL and DataFrame-based query APIs.
- Ballista: Ballista is a distributed compute platform within DataBend, built on top of DataFusion, that allows for efficient and scalable execution of large-scale data processing tasks.
- Arrow: DataBend leverages Apache Arrow, an in-memory columnar data format, to enable efficient data exchange between components and optimize query performance.
OpenTSDB Key Concepts
- Data Point: A single measurement in time consisting of a timestamp, metric, value, and associated tags.
- Metric: A named value that represents a specific aspect of a system, such as CPU usage or temperature.
- Tags: Key-value pairs associated with data points that provide metadata and help categorize and query the data.
DataBend Architecture
DataBend is built on a cloud-native, distributed architecture that supports both NoSQL and SQL-like querying capabilities. Its modular design allows users to choose and combine components based on their specific use case and requirements. The core components of DataBend’s architecture include DataFusion, Ballista, and the storage layer. DataFusion is responsible for query execution and optimization, while Ballista enables distributed computing for large-scale data processing tasks. The storage layer in DataBend can be configured to work with various storage backends, such as object storage or distributed file systems.
OpenTSDB Architecture
OpenTSDB is built on top of Apache HBase, a distributed and scalable NoSQL database, and relies on its architecture for data storage and management. OpenTSDB stores time series data in HBase tables, with data points organized by metric, timestamp, and tags. The database uses a schema-less data model, which allows for flexibility when adding new metrics and tags. The OpenTSDB architecture also supports horizontal scaling by distributing data across multiple HBase nodes.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
DataBend Features
Unified Batch and Stream Processing
DataBend supports both batch and streaming data processing, enabling users to build a wide range of applications that require real-time or historical data analysis.
Extensible Query Execution
DataBend’s DataFusion component provides a powerful and extensible query execution framework that supports both SQL and DataFrame-based query APIs.
Scalable Distributed Computing
With its Ballista compute platform, DataBend enables efficient and scalable execution of large-scale data processing tasks across a distributed cluster of nodes.
Flexible Storage
DataBend’s architecture allows users to configure the storage layer to work with various storage backends, providing flexibility and adaptability to different use cases.
OpenTSDB Features
Scalability
OpenTSDB’s distributed architecture allows for horizontal scaling, ensuring that the database can handle growing volumes of time series data.
Data Compression
OpenTSDB uses various compression techniques to reduce the storage footprint of time series data.
Query Language with time series support
OpenTSDB features a flexible query language that supports aggregation, downsampling, filtering, and other operations for analyzing time series data.
DataBend Use Cases
Real-Time Analytics
DataBend’s support for streaming data processing and its powerful query execution framework make it a suitable choice for building real-time analytics applications, such as log analysis, monitoring, and anomaly detection.
Data Warehousing
With its scalable distributed computing capabilities and flexible storage options, DataBend can be used to build large-scale data warehouses that can efficiently store and analyze vast amounts of structured and semi-structured data.
Machine Learning
DataBend’s ability to handle arge-scale data processing and its support for both batch and streaming data make it an excellent choice for machine learning applications. Users can leverage DataBend to preprocess, transform, and analyze data for feature engineering, model training, and evaluation, enabling them to derive valuable insights and build data-driven machine learning models.
OpenTSDB Use Cases
Monitoring and Alerting
OpenTSDB is well-suited for large-scale monitoring and alerting systems that generate vast amounts of time series data from various sources.
IoT Data Storage
OpenTSDB can store and analyze time series data generated by IoT devices, such as sensors and smart appliances, enabling real-time insights and analytics.
Performance Analysis
OpenTSDB’s flexible querying capabilities make it an ideal choice for analyzing system and application performance metrics over time.
DataBend Pricing Model
As an open-source project, DataBend is freely available for use without any licensing fees or subscription costs. Users can deploy and manage DataBend on their own infrastructure or opt for cloud-based deployment using popular cloud providers. DataBend itself also provides a managed cloud service with free trial credits available.
OpenTSDB Pricing Model
OpenTSDB is open-source software, which means it is free to use without any licensing fees. However, the cost of running OpenTSDB depends on the infrastructure required to support the underlying HBase database, such as cloud services or on-premises hardware.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.