Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of DataBend and OSI PI Data Historian so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how DataBend and OSI PI Data Historian perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

DataBend vs OSI PI Data Historian Breakdown


 
Database Model

Data warehouse

Time series database/data historian

Architecture

DataBend can be run on your own infrastructure or using a managed service. It is designed as a cloud native system and is built to take advantage of many of the services available in cloud providers like AWS, Google Cloud, and Azure.

OSIsoft PI System is a suite of software products designed for real-time data collection, storage, and analysis of time series data in industrial environments. The PI System is built around the PI Server, which stores, processes, and serves data to clients, and it can be deployed on-premises or in the cloud.

License

Apache 2.0

Closed source

Use Cases

Data analytics, Data warehousing, Real-time analytics, Big data processing

Industrial data management, real-time monitoring, asset health tracking, predictive maintenance, energy management

Scalability

Horizontally scalable with support for distributed computing

Supports horizontal scaling through distributed architecture, data replication, and data federation for large-scale deployments

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

DataBend Overview

DataBend is an open-source, cloud-native data processing and analytics platform designed to provide high-performance, cost-effective, and scalable solutions for big data workloads. The project is driven by a community of developers, researchers, and industry professionals aiming to create a unified data processing platform that combines batch and streaming processing capabilities with advanced analytical features. DataBend’s flexible architecture allows users to build a wide range of applications, from real-time analytics to large-scale data warehousing.

OSI PI Data Historian Overview

OSI PI, also known as OSIsoft PI System, is an enterprise-level data management and analytics platform specifically designed for handling time series data from industrial processes, sensors, and other sources. Developed by OSIsoft (acquired by AVEVA in 2021), the PI System has been widely used in various industries such as energy, manufacturing, utilities, and pharmaceuticals since its introduction in the 1980s. It provides the ability to collect, store, analyze, and visualize large volumes of time series data in real-time, allowing organizations to gain insights, optimize processes, and improve decision-making.


DataBend for Time Series Data

DataBend’s architecture and processing capabilities make it a suitable choice for working with time series data. Its support for both batch and streaming data processing allows users to ingest, store, and analyze time series data at scale. Additionally, DataBend’s integration with Apache Arrow and its powerful query execution framework enable efficient querying and analytics on time series data, making it a versatile choice for applications that require real-time insights and analytics.

OSI PI Data Historian for Time Series Data

OSI PI was created for storing time series data, making it an ideal choice for organizations that need to manage large volumes of sensor and process data. Its architecture and components are optimized for collecting, storing, and analyzing time series data with high efficiency and minimal latency. The PI System’s scalability and performance make it a suitable solution for organizations dealing with vast amounts of data generated by industrial processes, IoT devices, or other sources.


DataBend Key Concepts

  • DataFusion: DataFusion is a core component of DataBend, providing an extensible query execution framework that supports both SQL and DataFrame-based query APIs.
  • Ballista: Ballista is a distributed compute platform within DataBend, built on top of DataFusion, that allows for efficient and scalable execution of large-scale data processing tasks.
  • Arrow: DataBend leverages Apache Arrow, an in-memory columnar data format, to enable efficient data exchange between components and optimize query performance.

OSI PI Data Historian Key Concepts

  • PI Server: The core component of the PI System, responsible for data collection, storage, and management.
  • PI Interfaces and PI Connectors: Software components that collect data from various sources and send it to the PI Server.
  • PI Asset Framework: A modeling framework that allows users to create a hierarchical structure of assets and their associated metadata, making it easier to understand and analyze data.
  • PI DataLink: An add-in for Microsoft Excel that enables users to access and analyze PI System data directly from Excel.
  • PI ProcessBook: A visualization tool for creating interactive, graphical displays of PI System data.


DataBend Architecture

DataBend is built on a cloud-native, distributed architecture that supports both NoSQL and SQL-like querying capabilities. Its modular design allows users to choose and combine components based on their specific use case and requirements. The core components of DataBend’s architecture include DataFusion, Ballista, and the storage layer. DataFusion is responsible for query execution and optimization, while Ballista enables distributed computing for large-scale data processing tasks. The storage layer in DataBend can be configured to work with various storage backends, such as object storage or distributed file systems.

OSI PI Data Historian Architecture

OSI PI is a data management platform built around the PI Server, which is responsible for data collection, storage, and management. The PI System uses a highly efficient, proprietary time series database to store data. PI Interfaces and PI Connectors collect data from various sources and send it to the PI Server. The PI Asset Framework (AF) allows users to model their assets and their associated data in a hierarchical structure, making it easier to understand and analyze the data. Various client tools, such as PI DataLink and PI ProcessBook, enable users to access and visualize data stored in the PI System.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

DataBend Features

Unified Batch and Stream Processing

DataBend supports both batch and streaming data processing, enabling users to build a wide range of applications that require real-time or historical data analysis.

Extensible Query Execution

DataBend’s DataFusion component provides a powerful and extensible query execution framework that supports both SQL and DataFrame-based query APIs.

Scalable Distributed Computing

With its Ballista compute platform, DataBend enables efficient and scalable execution of large-scale data processing tasks across a distributed cluster of nodes.

Flexible Storage

DataBend’s architecture allows users to configure the storage layer to work with various storage backends, providing flexibility and adaptability to different use cases.

OSI PI Data Historian Features

Data collection and storage

OSI PI’s PI Interfaces and PI Connectors enable seamless data collection from a wide variety of sources, while the PI Server efficiently stores and manages the data.

Scalability

The PI System is highly scalable, allowing organizations to handle large volumes of data and a growing number of data sources without compromising performance.

Asset modeling

The PI Asset Framework (AF) provides a powerful way to model assets and their associated data, making it easier to understand and analyze complex industrial processes.

Data visualization

Tools like PI DataLink and PI ProcessBook enable users to analyze and visualize data stored in the PI System, facilitating better decision-making and process optimization.


DataBend Use Cases

Real-Time Analytics

DataBend’s support for streaming data processing and its powerful query execution framework make it a suitable choice for building real-time analytics applications, such as log analysis, monitoring, and anomaly detection.

Data Warehousing

With its scalable distributed computing capabilities and flexible storage options, DataBend can be used to build large-scale data warehouses that can efficiently store and analyze vast amounts of structured and semi-structured data.

Machine Learning

DataBend’s ability to handle arge-scale data processing and its support for both batch and streaming data make it an excellent choice for machine learning applications. Users can leverage DataBend to preprocess, transform, and analyze data for feature engineering, model training, and evaluation, enabling them to derive valuable insights and build data-driven machine learning models.

OSI PI Data Historian Use Cases

Process optimization

OSI PI can help organizations identify inefficiencies, monitor performance, and optimize their industrial processes by providing real-time insights into time series data from sensors and other sources.

Predictive maintenance

By analyzing historical data and detecting patterns or anomalies, OSI PI enables organizations to implement predictive maintenance strategies, reducing equipment downtime and maintenance costs.

Energy management

OSI PI can be used to track energy consumption across various assets and processes, allowing organizations to identify areas for improvement and implement energy-saving measures.


DataBend Pricing Model

As an open-source project, DataBend is freely available for use without any licensing fees or subscription costs. Users can deploy and manage DataBend on their own infrastructure or opt for cloud-based deployment using popular cloud providers. DataBend itself also provides a managed cloud service with free trial credits available.

OSI PI Data Historian Pricing Model

Pricing for OSI PI is typically based on a combination of factors such as the number of data sources, the number of users, and the level of support required. Pricing details are not publicly available, as they are provided on a quote basis depending on the specific needs of the organization.