DataBend vs MariaDB
A detailed comparison
Compare DataBend and MariaDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of DataBend and MariaDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how DataBend and MariaDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
DataBend vs MariaDB Breakdown
Database Model | Data warehouse |
Relational database |
Architecture | DataBend can be run on your own infrastructure or using a managed service. It is designed as a cloud native system and is built to take advantage of many of the services available in cloud providers like AWS, Google Cloud, and Azure. |
MariaDB can be deployed on-premises, in the cloud, or as a hybrid solution, and is compatible with various operating systems, including Linux, Windows, and macOS. |
License | Apache 2.0 |
GNU GPLv2 |
Use Cases | Data analytics, Data warehousing, Real-time analytics, Big data processing |
Web applications, transaction processing, e-commerce |
Scalability | Horizontally scalable with support for distributed computing |
Supports replication and sharding for horizontal scaling, as well as query optimization and caching for improved performance |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
DataBend Overview
DataBend is an open-source, cloud-native data processing and analytics platform designed to provide high-performance, cost-effective, and scalable solutions for big data workloads. The project is driven by a community of developers, researchers, and industry professionals aiming to create a unified data processing platform that combines batch and streaming processing capabilities with advanced analytical features. DataBend’s flexible architecture allows users to build a wide range of applications, from real-time analytics to large-scale data warehousing.
MariaDB Overview
MariaDB is an open-source relational database management system (RDBMS) that was created as a fork of MySQL in 2009 by the original developers of MySQL, led by Michael Widenius. The primary goal of MariaDB was to provide an open-source and community-driven alternative to MySQL, which was acquired by Oracle Corporation in 2008. MariaDB is compatible with MySQL and has enhanced features, better performance, and improved security. It is widely used by organizations worldwide and is supported by the MariaDB Foundation, which ensures its continued open-source development.
DataBend for Time Series Data
DataBend’s architecture and processing capabilities make it a suitable choice for working with time series data. Its support for both batch and streaming data processing allows users to ingest, store, and analyze time series data at scale. Additionally, DataBend’s integration with Apache Arrow and its powerful query execution framework enable efficient querying and analytics on time series data, making it a versatile choice for applications that require real-time insights and analytics.
MariaDB for Time Series Data
While MariaDB is not specifically designed for time series data, it can be used to store, process, and analyze time series data due to its flexible and extensible architecture. SQL support, along with analytics optimized storage engines like ColumnStore make it suitable for handling time series data at smaller levels of data volume.
DataBend Key Concepts
- DataFusion: DataFusion is a core component of DataBend, providing an extensible query execution framework that supports both SQL and DataFrame-based query APIs.
- Ballista: Ballista is a distributed compute platform within DataBend, built on top of DataFusion, that allows for efficient and scalable execution of large-scale data processing tasks.
- Arrow: DataBend leverages Apache Arrow, an in-memory columnar data format, to enable efficient data exchange between components and optimize query performance.
MariaDB Key Concepts
- Storage Engines: MariaDB supports multiple storage engines, each optimized for specific types of workloads or data storage requirements. Examples include InnoDB, MyISAM, Aria, and ColumnStore.
- Galera Cluster: A synchronous, multi-master replication solution for MariaDB that allows for high availability, fault tolerance, and load balancing.
- MaxScale: A database proxy for MariaDB that provides advanced features such as query routing, load balancing, and security.
- Connectors: MariaDB provides a variety of connectors to allow applications to interact with the database using various programming languages and APIs.
DataBend Architecture
DataBend is built on a cloud-native, distributed architecture that supports both NoSQL and SQL-like querying capabilities. Its modular design allows users to choose and combine components based on their specific use case and requirements. The core components of DataBend’s architecture include DataFusion, Ballista, and the storage layer. DataFusion is responsible for query execution and optimization, while Ballista enables distributed computing for large-scale data processing tasks. The storage layer in DataBend can be configured to work with various storage backends, such as object storage or distributed file systems.
MariaDB Architecture
MariaDB is a relational database that uses the SQL language for querying and data manipulation. Its architecture is based on a client-server model, with clients interacting with the server through various connectors and APIs. MariaDB supports multiple storage engines, allowing users to choose the most suitable engine for their specific use case. The database also offers replication and clustering options for high availability and load balancing.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
DataBend Features
Unified Batch and Stream Processing
DataBend supports both batch and streaming data processing, enabling users to build a wide range of applications that require real-time or historical data analysis.
Extensible Query Execution
DataBend’s DataFusion component provides a powerful and extensible query execution framework that supports both SQL and DataFrame-based query APIs.
Scalable Distributed Computing
With its Ballista compute platform, DataBend enables efficient and scalable execution of large-scale data processing tasks across a distributed cluster of nodes.
Flexible Storage
DataBend’s architecture allows users to configure the storage layer to work with various storage backends, providing flexibility and adaptability to different use cases.
MariaDB Features
Compatibility
MariaDB is fully compatible with MySQL, making it easy to migrate existing MySQL applications and databases.
Storage Engines
MariaDB supports multiple storage engines, allowing users to choose the best option for their specific use case.
Replication and Clustering
MariaDB offers built-in replication and supports Galera Cluster for high availability, fault tolerance, and load balancing. Security: MariaDB provides advanced security features such as data encryption, secure connections, and role-based access control.
DataBend Use Cases
Real-Time Analytics
DataBend’s support for streaming data processing and its powerful query execution framework make it a suitable choice for building real-time analytics applications, such as log analysis, monitoring, and anomaly detection.
Data Warehousing
With its scalable distributed computing capabilities and flexible storage options, DataBend can be used to build large-scale data warehouses that can efficiently store and analyze vast amounts of structured and semi-structured data.
Machine Learning
DataBend’s ability to handle arge-scale data processing and its support for both batch and streaming data make it an excellent choice for machine learning applications. Users can leverage DataBend to preprocess, transform, and analyze data for feature engineering, model training, and evaluation, enabling them to derive valuable insights and build data-driven machine learning models.
MariaDB Use Cases
Web Applications
MariaDB is a popular choice for web applications due to its compatibility with MySQL, performance improvements, and open-source nature.
Data Migration
Organizations looking to migrate from MySQL to an open-source alternative can easily transition to MariaDB, thanks to its compatibility and enhanced features.
OLTP Workloads
As a relational database MariaDB is a good fit for any application that requires strong transactional guarantees.
DataBend Pricing Model
As an open-source project, DataBend is freely available for use without any licensing fees or subscription costs. Users can deploy and manage DataBend on their own infrastructure or opt for cloud-based deployment using popular cloud providers. DataBend itself also provides a managed cloud service with free trial credits available.
MariaDB Pricing Model
MariaDB is an open-source database, which means it is free to download, use, and modify. However, for organizations that require professional support, the MariaDB Corporation offers various subscription plans, including MariaDB SkySQL, a fully managed cloud database service. Pricing for support subscriptions and the SkySQL service depends on the chosen plan, service level, and resource usage.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.