Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of ClickHouse and AWS Redshift so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how ClickHouse and AWS Redshift perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

ClickHouse vs AWS Redshift Breakdown


 
Database Model

Columnar database

Data warehouse

Architecture

ClickHouse can be deployed on-premises, in the cloud, or as a managed service.

AWS Redshift utilizes a columnar storage format for fast querying and supports standard SQL. Redshift uses a distributed, shared-nothing architecture, where data is partitioned across multiple compute nodes. Each node is further divided into slices, with each slice processing a subset of data in parallel. Redshift can be deployed in a single-node or multi-node cluster, with the latter providing better performance for large datasets.

License

Apache 2.0

Closed source

Use Cases

Real-time analytics, big data processing, event logging, monitoring, IoT, data warehousing

Business analytics, large-scale data processing, real-time dashboards, data integration, machine learning

Scalability

Horizontally scalable, supports distributed query processing and parallel execution

Supports scaling storage and compute independently, with support for adding or removing nodes as needed

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

ClickHouse Overview

ClickHouse is an open source columnar database management system designed for high-performance online analytical processing (OLAP) tasks. It was developed by Yandex, a leading Russian technology company. ClickHouse is known for its ability to process large volumes of data in real-time, providing fast query performance and real-time analytics. Its columnar storage architecture enables efficient data compression and faster query execution, making it suitable for large-scale data analytics and business intelligence applications.

AWS Redshift Overview

Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. It was launched in 2012 as part of the AWS suite of products. Redshift is designed for analytic workloads and integrates with various data loading and ETL tools, as well as business intelligence and reporting tools. It uses columnar storage to optimize storage costs and improve query performance.


ClickHouse for Time Series Data

ClickHouse can be used for storing and analyzing time series data effectively, although it is not explicitly optimized for working with time series data. While ClickHouse can query time series data very quickly once ingested, it tends to struggle with very high write scenarios where data needs to be ingested in smaller batches so it can be analyzed in real time.

AWS Redshift for Time Series Data

AWS Redshift can be used for time series data workloads, although Redshift is optimized for more general data warehouse use cases. Users can utilize date and time-based functions to aggregate, filter, and transform time series data. Redshift also offers ‘time-series tables’ which allow data to be stored in tables based on a fixed retention period.


ClickHouse Key Concepts

  • Columnar storage: ClickHouse stores data in a columnar format, which means that data for each column is stored separately. This enables efficient compression and faster query execution, as only the required columns are read during query execution.
  • Distributed processing: ClickHouse supports distributed processing, allowing queries to be executed across multiple nodes in a cluster, improving query performance and scalability.
  • Data replication: ClickHouse provides data replication, ensuring data availability and fault tolerance in case of hardware failures or node outages.
  • Materialized Views: ClickHouse supports materialized views, which are precomputed query results stored as tables. Materialized views can significantly improve query performance, as they allow for faster data retrieval by avoiding the need to recompute the results for each query.

AWS Redshift Key Concepts

  • Cluster: A Redshift cluster is a set of nodes, which consists of a leader node and one or more compute nodes. The leader node manages communication with client applications and coordinates query execution among compute nodes.
  • Compute Node: These nodes store data and execute queries in parallel. The number of compute nodes in a cluster affects its storage capacity and query performance.
  • Columnar Storage: Redshift uses a columnar storage format, which stores data in columns rather than rows. This format improves query performance and reduces storage space requirements.
  • Node slices: Compute nodes are divided into slices. Each slice is allocated an equal portion of the node’s memory and disk space, where it processes a portion of the loaded data.


ClickHouse Architecture

ClickHouse’s architecture is designed to support high-performance analytics on large datasets. ClickHouse stores data in a columnar format. This enables efficient data compression and faster query execution, as only the required columns are read during query execution. ClickHouse also supports distributed processing, which allows for queries to be executed across multiple nodes in a cluster. ClickHouse uses the MergeTree storage engine as its primary table engine. MergeTree is designed for high-performance OLAP tasks and supports data replication, data partitioning, and indexing.

AWS Redshift Architecture

Redshift’s architecture is based on a distributed and shared-nothing architecture. A cluster consists of a leader node and one or more compute nodes. The leader node is responsible for coordinating query execution, while compute nodes store data and execute queries in parallel. Data is stored in a columnar format, which improves query performance and reduces storage space requirements. Redshift uses Massively Parallel Processing (MPP) to distribute and execute queries across multiple nodes, allowing it to scale horizontally and provide high performance for large-scale data warehousing workloads.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

ClickHouse Features

Real-time analytics

ClickHouse is designed for real-time analytics and can process large volumes of data with low latency, providing fast query performance and real-time insights.

Data compression

ClickHouse’s columnar storage format enables efficient data compression, reducing storage requirements and improving query performance.

Materialized views

ClickHouse supports materialized views, which can significantly improve query performance by precomputing and storing query results as tables.

AWS Redshift Features

Scalability

Redshift allows you to scale your cluster up or down by adding or removing compute nodes, enabling you to adjust your storage capacity and query performance based on your needs.

Performance

Redshift’s columnar storage format and MPP architecture enable it to deliver high-performance query execution for large-scale data warehousing workloads.

Security

Redshift provides a range of security features, including encryption at rest and in transit, network isolation using Amazon Virtual Private Cloud (VPC), and integration with AWS Identity and Access Management (IAM) for access control.


ClickHouse Use Cases

Large-scale data analytics

ClickHouse’s high-performance query engine and columnar storage format make it suitable for large-scale data analytics and business intelligence applications.

Real-time reporting

ClickHouse’s real-time analytics capabilities enable organizations to generate real-time reports and dashboards, providing up-to-date insights for decision-making.

Log and event data analysis

ClickHouse’s ability to process large volumes of data in real-time makes it a suitable choice for log and event data analysis, such as analyzing web server logs or application events.

AWS Redshift Use Cases

Data Warehousing

Redshift is designed for large-scale data warehousing workloads, providing a scalable and high-performance solution for storing and analyzing structured data.

Business Intelligence and Reporting

Redshift integrates with various BI and reporting tools, enabling organizations to gain insights from their data and make data-driven decisions.

ETL and Data Integration

Redshift supports data loading and extraction, transformation, and loading (ETL) processes, allowing you to integrate data from various sources and prepare it for analysis.


ClickHouse Pricing Model

ClickHouse is an open source database and can be deployed on your own hardware. The developers of ClickHouse have also recently created ClickHouse Cloud which is a managed service for deploying ClickHouse.

AWS Redshift Pricing Model

Amazon Redshift offers two pricing models: On-Demand and Reserved Instances. With On-Demand pricing, you pay for the capacity you use on an hourly basis, with no long-term commitments. Reserved Instances offer the option to reserve capacity for a one- or three-year term, with a lower hourly rate compared to On-Demand pricing. In addition to these pricing models, you can also choose between different node types, which offer different amounts of storage, memory, and compute resources.