ClickHouse vs Prometheus
A detailed comparison
Compare ClickHouse and Prometheus for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of ClickHouse and Prometheus so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how ClickHouse and Prometheus perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
ClickHouse vs Prometheus Breakdown
Database Model | Columnar database |
Time series database |
Architecture | ClickHouse can be deployed on-premises, in the cloud, or as a managed service. |
Prometheus uses a pull-based model where it scrapes metrics from configured targets at given intervals. It stores time series data in a custom, efficient, local storage format, and supports multi-dimensional data collection, querying, and alerting. It can be deployed as a single binary on a server or on a container platform like Kubernetes. |
License | Apache 2.0 |
Apache 2.0 |
Use Cases | Real-time analytics, big data processing, event logging, monitoring, IoT, data warehousing |
Monitoring, alerting, observability, system metrics, application metrics |
Scalability | Horizontally scalable, supports distributed query processing and parallel execution |
Prometheus is designed for reliability and can scale vertically (single node with increased resources) or through federation (hierarchical setup where Prometheus servers scrape metrics from other Prometheus servers) |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
ClickHouse Overview
ClickHouse is an open source columnar database management system designed for high-performance online analytical processing (OLAP) tasks. It was developed by Yandex, a leading Russian technology company. ClickHouse is known for its ability to process large volumes of data in real-time, providing fast query performance and real-time analytics. Its columnar storage architecture enables efficient data compression and faster query execution, making it suitable for large-scale data analytics and business intelligence applications.
Prometheus Overview
Prometheus is an open-source monitoring and alerting toolkit initially developed at SoundCloud in 2012. It has since become a widely adopted monitoring solution and a part of the Cloud Native Computing Foundation (CNCF) project. Prometheus focuses on providing real-time insights and alerts for containerized and microservices-based environments. Its primary use case is monitoring infrastructure and applications, with an emphasis on reliability and scalability.
ClickHouse for Time Series Data
ClickHouse can be used for storing and analyzing time series data effectively, although it is not explicitly optimized for working with time series data. While ClickHouse can query time series data very quickly once ingested, it tends to struggle with very high write scenarios where data needs to be ingested in smaller batches so it can be analyzed in real time.
Prometheus for Time Series Data
Prometheus is specifically designed for time series data, as its primary focus is on monitoring and alerting based on the state of infrastructure and applications. It uses a pull-based model, where the Prometheus server scrapes metrics from the target systems at regular intervals. This model is suitable for monitoring dynamic environments, as it allows for automatic discovery and monitoring of new instances. However, Prometheus is not intended as a general-purpose time series database and might not be the best choice for high cardinality or long-term data storage.
ClickHouse Key Concepts
- Columnar storage: ClickHouse stores data in a columnar format, which means that data for each column is stored separately. This enables efficient compression and faster query execution, as only the required columns are read during query execution.
- Distributed processing: ClickHouse supports distributed processing, allowing queries to be executed across multiple nodes in a cluster, improving query performance and scalability.
- Data replication: ClickHouse provides data replication, ensuring data availability and fault tolerance in case of hardware failures or node outages.
- Materialized Views: ClickHouse supports materialized views, which are precomputed query results stored as tables. Materialized views can significantly improve query performance, as they allow for faster data retrieval by avoiding the need to recompute the results for each query.
Prometheus Key Concepts
- Metric: A numeric representation of a particular aspect of a system, such as CPU usage or memory consumption.
- Time Series: A collection of data points for a metric, indexed by timestamp.
- Label: A key-value pair that provides metadata and context for a metric, enabling more granular querying and aggregation.
- PromQL: Prometheus uses its own query language called PromQL (Prometheus Query Language) for querying time series data and generating alerts.
ClickHouse Architecture
ClickHouse’s architecture is designed to support high-performance analytics on large datasets. ClickHouse stores data in a columnar format. This enables efficient data compression and faster query execution, as only the required columns are read during query execution. ClickHouse also supports distributed processing, which allows for queries to be executed across multiple nodes in a cluster. ClickHouse uses the MergeTree storage engine as its primary table engine. MergeTree is designed for high-performance OLAP tasks and supports data replication, data partitioning, and indexing.
Prometheus Architecture
Prometheus is a single-server, standalone monitoring system that uses a pull-based approach to collect metrics from target systems. It stores time series data in a custom, highly compressed, on-disk format, optimized for fast querying and low resource usage. The architecture of Prometheus is modular and extensible, with components like exporters, service discovery mechanisms, and integrations with other monitoring systems. As a non-distributed system, it lacks built-in clustering or horizontal scalability, but it supports federation, allowing multiple Prometheus servers to share and aggregate data.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
ClickHouse Features
Real-time analytics
ClickHouse is designed for real-time analytics and can process large volumes of data with low latency, providing fast query performance and real-time insights.
Data compression
ClickHouse’s columnar storage format enables efficient data compression, reducing storage requirements and improving query performance.
Materialized views
ClickHouse supports materialized views, which can significantly improve query performance by precomputing and storing query results as tables.
Prometheus Features
Pull-based Model
Prometheus collects metrics by actively scraping targets, enabling automatic discovery and monitoring of dynamic environments.
PromQL
The powerful Prometheus Query Language allows for expressive and flexible querying of time series data.
Alerting
Prometheus supports alerting based on user-defined rules and integrates with various alert management and notification systems.
ClickHouse Use Cases
Large-scale data analytics
ClickHouse’s high-performance query engine and columnar storage format make it suitable for large-scale data analytics and business intelligence applications.
Real-time reporting
ClickHouse’s real-time analytics capabilities enable organizations to generate real-time reports and dashboards, providing up-to-date insights for decision-making.
Log and event data analysis
ClickHouse’s ability to process large volumes of data in real-time makes it a suitable choice for log and event data analysis, such as analyzing web server logs or application events.
Prometheus Use Cases
Infrastructure Monitoring
Prometheus is widely used for monitoring the health and performance of containerized and microservices-based infrastructure, including Kubernetes and Docker environments.
Application Performance Monitoring (APM)
Prometheus can collect custom application metrics using client libraries and monitor application performance in real-time.
Alerting and Anomaly Detection
Prometheus enables organizations to set up alerts based on specific thresholds or conditions, helping them identify and respond to potential issues or anomalies quickly.
ClickHouse Pricing Model
ClickHouse is an open source database and can be deployed on your own hardware. The developers of ClickHouse have also recently created ClickHouse Cloud which is a managed service for deploying ClickHouse.
Prometheus Pricing Model
Prometheus is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Prometheus server. Additionally, several cloud-based managed Prometheus services, such as Grafana Cloud and Weave Cloud, offer different pricing models based on factors like data retention, query rate, and support.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.