Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Cassandra and Prometheus so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Apache Cassandra and Prometheus perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Apache Cassandra vs Prometheus Breakdown


 
Database Model

Distributed wide-column database

Time series database

Architecture

Apache Cassandra follows a masterless, peer-to-peer architecture, where each node in the cluster is functionally the same and communicates with other nodes using a gossip protocol. Data is distributed across nodes in the cluster using consistent hashing, and Cassandra supports tunable consistency levels for read and write operations. It can be deployed on-premises, in the cloud, or as a managed service

Prometheus uses a pull-based model where it scrapes metrics from configured targets at given intervals. It stores time series data in a custom, efficient, local storage format, and supports multi-dimensional data collection, querying, and alerting. It can be deployed as a single binary on a server or on a container platform like Kubernetes.

License

Apache 2.0

Apache 2.0

Use Cases

High write throughput applications, time series data, messaging systems, recommendation engines, IoT

Monitoring, alerting, observability, system metrics, application metrics

Scalability

Horizontally scalable with support for data partitioning, replication, and linear scalability as nodes are added

Prometheus is designed for reliability and can scale vertically (single node with increased resources) or through federation (hierarchical setup where Prometheus servers scrape metrics from other Prometheus servers)

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Apache Cassandra Overview

Apache Cassandra is a highly scalable, distributed, and decentralized NoSQL database designed to handle large amounts of data across many commodity servers. Originally created by Facebook, Cassandra is now an Apache Software Foundation project. Its primary focus is on providing high availability, fault tolerance, and linear scalability, making it a popular choice for applications with demanding workloads and low-latency requirements.

Prometheus Overview

Prometheus is an open-source monitoring and alerting toolkit initially developed at SoundCloud in 2012. It has since become a widely adopted monitoring solution and a part of the Cloud Native Computing Foundation (CNCF) project. Prometheus focuses on providing real-time insights and alerts for containerized and microservices-based environments. Its primary use case is monitoring infrastructure and applications, with an emphasis on reliability and scalability.


Apache Cassandra for Time Series Data

Cassandra can be used for handling time series data due to its distributed architecture and support for time-based partitioning. Time series data can be efficiently stored and retrieved using partition keys based on time ranges, ensuring quick access to data points.

Prometheus for Time Series Data

Prometheus is specifically designed for time series data, as its primary focus is on monitoring and alerting based on the state of infrastructure and applications. It uses a pull-based model, where the Prometheus server scrapes metrics from the target systems at regular intervals. This model is suitable for monitoring dynamic environments, as it allows for automatic discovery and monitoring of new instances. However, Prometheus is not intended as a general-purpose time series database and might not be the best choice for high cardinality or long-term data storage.


Apache Cassandra Key Concepts

  • Column Family: Similar to a table in a relational database, a column family is a collection of rows, each consisting of a key-value pair.
  • Partition Key: A unique identifier used to distribute data across multiple nodes in the cluster, ensuring even distribution and fast data retrieval.
  • Replication Factor: The number of copies of data stored across different nodes in the cluster to provide fault tolerance and high availability.
  • Consistency Level: A configurable parameter that determines the trade-off between read/write performance and data consistency across the cluster.

Prometheus Key Concepts

  • Metric: A numeric representation of a particular aspect of a system, such as CPU usage or memory consumption.
  • Time Series: A collection of data points for a metric, indexed by timestamp.
  • Label: A key-value pair that provides metadata and context for a metric, enabling more granular querying and aggregation.
  • PromQL: Prometheus uses its own query language called PromQL (Prometheus Query Language) for querying time series data and generating alerts.


Apache Cassandra Architecture

Cassandra uses a masterless, peer-to-peer architecture, in which all nodes are equal, and there is no single point of failure. This design ensures high availability and fault tolerance. Cassandra’s data model is a hybrid between a key-value and column-oriented system, where data is partitioned across nodes based on partition keys and stored in column families. Cassandra supports tunable consistency, allowing users to adjust the balance between data consistency and performance based on their specific needs.

Prometheus Architecture

Prometheus is a single-server, standalone monitoring system that uses a pull-based approach to collect metrics from target systems. It stores time series data in a custom, highly compressed, on-disk format, optimized for fast querying and low resource usage. The architecture of Prometheus is modular and extensible, with components like exporters, service discovery mechanisms, and integrations with other monitoring systems. As a non-distributed system, it lacks built-in clustering or horizontal scalability, but it supports federation, allowing multiple Prometheus servers to share and aggregate data.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Apache Cassandra Features

Linear Scalability

Cassandra can scale horizontally, adding nodes to the cluster to accommodate growing workloads and maintain consistent performance.

High Availability

With no single point of failure and support for data replication, Cassandra ensures data is always accessible, even in the event of node failures.

Tunable Consistency

Users can balance between data consistency and performance by adjusting consistency levels based on their application’s requirements.

Prometheus Features

Pull-based Model

Prometheus collects metrics by actively scraping targets, enabling automatic discovery and monitoring of dynamic environments.

PromQL

The powerful Prometheus Query Language allows for expressive and flexible querying of time series data.

Alerting

Prometheus supports alerting based on user-defined rules and integrates with various alert management and notification systems.


Apache Cassandra Use Cases

Messaging and Social Media Platforms

Cassandra’s high availability and low-latency make it suitable for messaging and social media applications that require fast, consistent access to user data.

IoT and Distributed Systems

With its ability to handle large amounts of data across distributed nodes, Cassandra is an excellent choice for IoT applications and other distributed systems that generate massive data streams.

E-commerce

Cassandra is a good fit for E-commerce use cases because it has the ability to support things like real-time inventory status and it’s architecture also allows for reduced latency by allowing region specific data to be closer to users.

Prometheus Use Cases

Infrastructure Monitoring

Prometheus is widely used for monitoring the health and performance of containerized and microservices-based infrastructure, including Kubernetes and Docker environments.

Application Performance Monitoring (APM)

Prometheus can collect custom application metrics using client libraries and monitor application performance in real-time.

Alerting and Anomaly Detection

Prometheus enables organizations to set up alerts based on specific thresholds or conditions, helping them identify and respond to potential issues or anomalies quickly.


Apache Cassandra Pricing Model

Apache Cassandra is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Cassandra cluster. Additionally, several managed Cassandra services, such as DataStax Astra and Amazon Keyspaces, offer different pricing models based on factors like data storage, request throughput, and support.

Prometheus Pricing Model

Prometheus is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Prometheus server. Additionally, several cloud-based managed Prometheus services, such as Grafana Cloud and Weave Cloud, offer different pricing models based on factors like data retention, query rate, and support.