Apache Cassandra vs PostgreSQL
A detailed comparison
Compare Apache Cassandra and PostgreSQL for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Cassandra and PostgreSQL so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Cassandra and PostgreSQL perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Cassandra vs PostgreSQL Breakdown
Database Model | Distributed wide-column database |
Relational database |
Architecture | Apache Cassandra follows a masterless, peer-to-peer architecture, where each node in the cluster is functionally the same and communicates with other nodes using a gossip protocol. Data is distributed across nodes in the cluster using consistent hashing, and Cassandra supports tunable consistency levels for read and write operations. It can be deployed on-premises, in the cloud, or as a managed service |
PostgreSQL can be deployed on various platforms, such as on-premises, in virtual machines, or as a managed cloud service like Amazon RDS, Google Cloud SQL, or Azure Database for PostgreSQL. |
License | Apache 2.0 |
PostgreSQL license (similar to MIT or BSD) |
Use Cases | High write throughput applications, time series data, messaging systems, recommendation engines, IoT |
Web applications, geospatial data, business intelligence, analytics, content management systems, financial applications, scientific applications |
Scalability | Horizontally scalable with support for data partitioning, replication, and linear scalability as nodes are added |
Supports vertical scaling, horizontal scaling through partitioning, sharding, and replication using available tools |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Cassandra Overview
Apache Cassandra is a highly scalable, distributed, and decentralized NoSQL database designed to handle large amounts of data across many commodity servers. Originally created by Facebook, Cassandra is now an Apache Software Foundation project. Its primary focus is on providing high availability, fault tolerance, and linear scalability, making it a popular choice for applications with demanding workloads and low-latency requirements.
PostgreSQL Overview
PostgreSQL, also known as Postgres, is an open-source relational database management system that was first released in 1996. It has a long history of being a robust, reliable, and feature-rich database system, widely used in various industries and applications. PostgreSQL is known for its adherence to the SQL standard and extensibility, which allows users to define their own data types, operators, and functions. It is developed and maintained by a dedicated community of contributors and is available on multiple platforms, including Windows, Linux, and macOS.
Apache Cassandra for Time Series Data
Cassandra can be used for handling time series data due to its distributed architecture and support for time-based partitioning. Time series data can be efficiently stored and retrieved using partition keys based on time ranges, ensuring quick access to data points.
PostgreSQL for Time Series Data
PostgreSQL can be used for time series data storage and analysis, although it was not specifically designed for this use case. With its rich set of data types, indexing options, and window function support, PostgreSQL can handle time series data. However, Postgres will not be as optimized for time series data as specialized time series databases when it comes to things like data compression, write throughput, and query speed. PostgreSQL also lacks a number of features that are useful for working with time series data like downsampling, retention policies, and custom SQL functions for time series data analysis.
Apache Cassandra Key Concepts
- Column Family: Similar to a table in a relational database, a column family is a collection of rows, each consisting of a key-value pair.
- Partition Key: A unique identifier used to distribute data across multiple nodes in the cluster, ensuring even distribution and fast data retrieval.
- Replication Factor: The number of copies of data stored across different nodes in the cluster to provide fault tolerance and high availability.
- Consistency Level: A configurable parameter that determines the trade-off between read/write performance and data consistency across the cluster.
PostgreSQL Key Concepts
- MVCC: Multi-Version Concurrency Control is a technique used by PostgreSQL to allow multiple transactions to be executed concurrently without conflicts or locking.
- WAL: Write-Ahead Logging is a method used to ensure data durability by logging changes to a journal before they are written to the main data files.
- TOAST: The Oversized-Attribute Storage Technique is a mechanism for storing large data values in a separate table to reduce the main table’s disk space consumption.
Apache Cassandra Architecture
Cassandra uses a masterless, peer-to-peer architecture, in which all nodes are equal, and there is no single point of failure. This design ensures high availability and fault tolerance. Cassandra’s data model is a hybrid between a key-value and column-oriented system, where data is partitioned across nodes based on partition keys and stored in column families. Cassandra supports tunable consistency, allowing users to adjust the balance between data consistency and performance based on their specific needs.
PostgreSQL Architecture
PostgreSQL is a client-server relational database system that uses the SQL language for querying and manipulation. It employs a process-based architecture, with each connection to the database being handled by a separate server process. This architecture provides isolation between different users and sessions. PostgreSQL supports ACID transactions and uses a combination of MVCC, WAL, and other techniques to ensure data consistency, durability, and performance. It also supports various extensions and external modules to enhance its functionality.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Cassandra Features
Linear Scalability
Cassandra can scale horizontally, adding nodes to the cluster to accommodate growing workloads and maintain consistent performance.
High Availability
With no single point of failure and support for data replication, Cassandra ensures data is always accessible, even in the event of node failures.
Tunable Consistency
Users can balance between data consistency and performance by adjusting consistency levels based on their application’s requirements.
PostgreSQL Features
Extensibility
PostgreSQL allows users to define custom data types, operators, and functions, making it highly adaptable to specific application requirements.
Full-text search
PostgreSQL has built-in support for full-text search, enabling users to perform complex text-based queries and analyses.
Geospatial support
With the PostGIS extension, PostgreSQL can store and manipulate geospatial data, making it suitable for GIS applications.
Apache Cassandra Use Cases
Messaging and Social Media Platforms
Cassandra’s high availability and low-latency make it suitable for messaging and social media applications that require fast, consistent access to user data.
IoT and Distributed Systems
With its ability to handle large amounts of data across distributed nodes, Cassandra is an excellent choice for IoT applications and other distributed systems that generate massive data streams.
E-commerce
Cassandra is a good fit for E-commerce use cases because it has the ability to support things like real-time inventory status and it’s architecture also allows for reduced latency by allowing region specific data to be closer to users.
PostgreSQL Use Cases
Enterprise applications
PostgreSQL is a popular choice for large-scale enterprise applications due to its reliability, performance, and feature set.
GIS applications
With the PostGIS extension, PostgreSQL can be used for storing and analyzing geospatial data in applications like mapping, routing, and geocoding.
OLTP workloads
As a relational database, PostgreSQL is a good fit for pretty much any application that involves transactional workloads.
Apache Cassandra Pricing Model
Apache Cassandra is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Cassandra cluster. Additionally, several managed Cassandra services, such as DataStax Astra and Amazon Keyspaces, offer different pricing models based on factors like data storage, request throughput, and support.
PostgreSQL Pricing Model
PostgreSQL is open source software, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed PostgreSQL server. Several cloud-based managed PostgreSQL services, such as Amazon RDS, Google Cloud SQL, and Azure Database for PostgreSQL, offer different pricing models based on factors like storage, computing resources, and support.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.