Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Cassandra and OSI PI Data Historian so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Apache Cassandra and OSI PI Data Historian perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Apache Cassandra vs OSI PI Data Historian Breakdown


 
Database Model

Distributed wide-column database

Time series database/data historian

Architecture

Apache Cassandra follows a masterless, peer-to-peer architecture, where each node in the cluster is functionally the same and communicates with other nodes using a gossip protocol. Data is distributed across nodes in the cluster using consistent hashing, and Cassandra supports tunable consistency levels for read and write operations. It can be deployed on-premises, in the cloud, or as a managed service

OSIsoft PI System is a suite of software products designed for real-time data collection, storage, and analysis of time series data in industrial environments. The PI System is built around the PI Server, which stores, processes, and serves data to clients, and it can be deployed on-premises or in the cloud.

License

Apache 2.0

Closed source

Use Cases

High write throughput applications, time series data, messaging systems, recommendation engines, IoT

Industrial data management, real-time monitoring, asset health tracking, predictive maintenance, energy management

Scalability

Horizontally scalable with support for data partitioning, replication, and linear scalability as nodes are added

Supports horizontal scaling through distributed architecture, data replication, and data federation for large-scale deployments

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Apache Cassandra Overview

Apache Cassandra is a highly scalable, distributed, and decentralized NoSQL database designed to handle large amounts of data across many commodity servers. Originally created by Facebook, Cassandra is now an Apache Software Foundation project. Its primary focus is on providing high availability, fault tolerance, and linear scalability, making it a popular choice for applications with demanding workloads and low-latency requirements.

OSI PI Data Historian Overview

OSI PI, also known as OSIsoft PI System, is an enterprise-level data management and analytics platform specifically designed for handling time series data from industrial processes, sensors, and other sources. Developed by OSIsoft (acquired by AVEVA in 2021), the PI System has been widely used in various industries such as energy, manufacturing, utilities, and pharmaceuticals since its introduction in the 1980s. It provides the ability to collect, store, analyze, and visualize large volumes of time series data in real-time, allowing organizations to gain insights, optimize processes, and improve decision-making.


Apache Cassandra for Time Series Data

Cassandra can be used for handling time series data due to its distributed architecture and support for time-based partitioning. Time series data can be efficiently stored and retrieved using partition keys based on time ranges, ensuring quick access to data points.

OSI PI Data Historian for Time Series Data

OSI PI was created for storing time series data, making it an ideal choice for organizations that need to manage large volumes of sensor and process data. Its architecture and components are optimized for collecting, storing, and analyzing time series data with high efficiency and minimal latency. The PI System’s scalability and performance make it a suitable solution for organizations dealing with vast amounts of data generated by industrial processes, IoT devices, or other sources.


Apache Cassandra Key Concepts

  • Column Family: Similar to a table in a relational database, a column family is a collection of rows, each consisting of a key-value pair.
  • Partition Key: A unique identifier used to distribute data across multiple nodes in the cluster, ensuring even distribution and fast data retrieval.
  • Replication Factor: The number of copies of data stored across different nodes in the cluster to provide fault tolerance and high availability.
  • Consistency Level: A configurable parameter that determines the trade-off between read/write performance and data consistency across the cluster.

OSI PI Data Historian Key Concepts

  • PI Server: The core component of the PI System, responsible for data collection, storage, and management.
  • PI Interfaces and PI Connectors: Software components that collect data from various sources and send it to the PI Server.
  • PI Asset Framework: A modeling framework that allows users to create a hierarchical structure of assets and their associated metadata, making it easier to understand and analyze data.
  • PI DataLink: An add-in for Microsoft Excel that enables users to access and analyze PI System data directly from Excel.
  • PI ProcessBook: A visualization tool for creating interactive, graphical displays of PI System data.


Apache Cassandra Architecture

Cassandra uses a masterless, peer-to-peer architecture, in which all nodes are equal, and there is no single point of failure. This design ensures high availability and fault tolerance. Cassandra’s data model is a hybrid between a key-value and column-oriented system, where data is partitioned across nodes based on partition keys and stored in column families. Cassandra supports tunable consistency, allowing users to adjust the balance between data consistency and performance based on their specific needs.

OSI PI Data Historian Architecture

OSI PI is a data management platform built around the PI Server, which is responsible for data collection, storage, and management. The PI System uses a highly efficient, proprietary time series database to store data. PI Interfaces and PI Connectors collect data from various sources and send it to the PI Server. The PI Asset Framework (AF) allows users to model their assets and their associated data in a hierarchical structure, making it easier to understand and analyze the data. Various client tools, such as PI DataLink and PI ProcessBook, enable users to access and visualize data stored in the PI System.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Apache Cassandra Features

Linear Scalability

Cassandra can scale horizontally, adding nodes to the cluster to accommodate growing workloads and maintain consistent performance.

High Availability

With no single point of failure and support for data replication, Cassandra ensures data is always accessible, even in the event of node failures.

Tunable Consistency

Users can balance between data consistency and performance by adjusting consistency levels based on their application’s requirements.

OSI PI Data Historian Features

Data collection and storage

OSI PI’s PI Interfaces and PI Connectors enable seamless data collection from a wide variety of sources, while the PI Server efficiently stores and manages the data.

Scalability

The PI System is highly scalable, allowing organizations to handle large volumes of data and a growing number of data sources without compromising performance.

Asset modeling

The PI Asset Framework (AF) provides a powerful way to model assets and their associated data, making it easier to understand and analyze complex industrial processes.

Data visualization

Tools like PI DataLink and PI ProcessBook enable users to analyze and visualize data stored in the PI System, facilitating better decision-making and process optimization.


Apache Cassandra Use Cases

Messaging and Social Media Platforms

Cassandra’s high availability and low-latency make it suitable for messaging and social media applications that require fast, consistent access to user data.

IoT and Distributed Systems

With its ability to handle large amounts of data across distributed nodes, Cassandra is an excellent choice for IoT applications and other distributed systems that generate massive data streams.

E-commerce

Cassandra is a good fit for E-commerce use cases because it has the ability to support things like real-time inventory status and it’s architecture also allows for reduced latency by allowing region specific data to be closer to users.

OSI PI Data Historian Use Cases

Process optimization

OSI PI can help organizations identify inefficiencies, monitor performance, and optimize their industrial processes by providing real-time insights into time series data from sensors and other sources.

Predictive maintenance

By analyzing historical data and detecting patterns or anomalies, OSI PI enables organizations to implement predictive maintenance strategies, reducing equipment downtime and maintenance costs.

Energy management

OSI PI can be used to track energy consumption across various assets and processes, allowing organizations to identify areas for improvement and implement energy-saving measures.


Apache Cassandra Pricing Model

Apache Cassandra is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Cassandra cluster. Additionally, several managed Cassandra services, such as DataStax Astra and Amazon Keyspaces, offer different pricing models based on factors like data storage, request throughput, and support.

OSI PI Data Historian Pricing Model

Pricing for OSI PI is typically based on a combination of factors such as the number of data sources, the number of users, and the level of support required. Pricing details are not publicly available, as they are provided on a quote basis depending on the specific needs of the organization.