Apache Cassandra vs MariaDB
A detailed comparison
Compare Apache Cassandra and MariaDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Cassandra and MariaDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Apache Cassandra and MariaDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Apache Cassandra vs MariaDB Breakdown
Database Model | Distributed wide-column database |
Relational database |
Architecture | Apache Cassandra follows a masterless, peer-to-peer architecture, where each node in the cluster is functionally the same and communicates with other nodes using a gossip protocol. Data is distributed across nodes in the cluster using consistent hashing, and Cassandra supports tunable consistency levels for read and write operations. It can be deployed on-premises, in the cloud, or as a managed service |
MariaDB can be deployed on-premises, in the cloud, or as a hybrid solution, and is compatible with various operating systems, including Linux, Windows, and macOS. |
License | Apache 2.0 |
GNU GPLv2 |
Use Cases | High write throughput applications, time series data, messaging systems, recommendation engines, IoT |
Web applications, transaction processing, e-commerce |
Scalability | Horizontally scalable with support for data partitioning, replication, and linear scalability as nodes are added |
Supports replication and sharding for horizontal scaling, as well as query optimization and caching for improved performance |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Apache Cassandra Overview
Apache Cassandra is a highly scalable, distributed, and decentralized NoSQL database designed to handle large amounts of data across many commodity servers. Originally created by Facebook, Cassandra is now an Apache Software Foundation project. Its primary focus is on providing high availability, fault tolerance, and linear scalability, making it a popular choice for applications with demanding workloads and low-latency requirements.
MariaDB Overview
MariaDB is an open-source relational database management system (RDBMS) that was created as a fork of MySQL in 2009 by the original developers of MySQL, led by Michael Widenius. The primary goal of MariaDB was to provide an open-source and community-driven alternative to MySQL, which was acquired by Oracle Corporation in 2008. MariaDB is compatible with MySQL and has enhanced features, better performance, and improved security. It is widely used by organizations worldwide and is supported by the MariaDB Foundation, which ensures its continued open-source development.
Apache Cassandra for Time Series Data
Cassandra can be used for handling time series data due to its distributed architecture and support for time-based partitioning. Time series data can be efficiently stored and retrieved using partition keys based on time ranges, ensuring quick access to data points.
MariaDB for Time Series Data
While MariaDB is not specifically designed for time series data, it can be used to store, process, and analyze time series data due to its flexible and extensible architecture. SQL support, along with analytics optimized storage engines like ColumnStore make it suitable for handling time series data at smaller levels of data volume.
Apache Cassandra Key Concepts
- Column Family: Similar to a table in a relational database, a column family is a collection of rows, each consisting of a key-value pair.
- Partition Key: A unique identifier used to distribute data across multiple nodes in the cluster, ensuring even distribution and fast data retrieval.
- Replication Factor: The number of copies of data stored across different nodes in the cluster to provide fault tolerance and high availability.
- Consistency Level: A configurable parameter that determines the trade-off between read/write performance and data consistency across the cluster.
MariaDB Key Concepts
- Storage Engines: MariaDB supports multiple storage engines, each optimized for specific types of workloads or data storage requirements. Examples include InnoDB, MyISAM, Aria, and ColumnStore.
- Galera Cluster: A synchronous, multi-master replication solution for MariaDB that allows for high availability, fault tolerance, and load balancing.
- MaxScale: A database proxy for MariaDB that provides advanced features such as query routing, load balancing, and security.
- Connectors: MariaDB provides a variety of connectors to allow applications to interact with the database using various programming languages and APIs.
Apache Cassandra Architecture
Cassandra uses a masterless, peer-to-peer architecture, in which all nodes are equal, and there is no single point of failure. This design ensures high availability and fault tolerance. Cassandra’s data model is a hybrid between a key-value and column-oriented system, where data is partitioned across nodes based on partition keys and stored in column families. Cassandra supports tunable consistency, allowing users to adjust the balance between data consistency and performance based on their specific needs.
MariaDB Architecture
MariaDB is a relational database that uses the SQL language for querying and data manipulation. Its architecture is based on a client-server model, with clients interacting with the server through various connectors and APIs. MariaDB supports multiple storage engines, allowing users to choose the most suitable engine for their specific use case. The database also offers replication and clustering options for high availability and load balancing.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Apache Cassandra Features
Linear Scalability
Cassandra can scale horizontally, adding nodes to the cluster to accommodate growing workloads and maintain consistent performance.
High Availability
With no single point of failure and support for data replication, Cassandra ensures data is always accessible, even in the event of node failures.
Tunable Consistency
Users can balance between data consistency and performance by adjusting consistency levels based on their application’s requirements.
MariaDB Features
Compatibility
MariaDB is fully compatible with MySQL, making it easy to migrate existing MySQL applications and databases.
Storage Engines
MariaDB supports multiple storage engines, allowing users to choose the best option for their specific use case.
Replication and Clustering
MariaDB offers built-in replication and supports Galera Cluster for high availability, fault tolerance, and load balancing. Security: MariaDB provides advanced security features such as data encryption, secure connections, and role-based access control.
Apache Cassandra Use Cases
Messaging and Social Media Platforms
Cassandra’s high availability and low-latency make it suitable for messaging and social media applications that require fast, consistent access to user data.
IoT and Distributed Systems
With its ability to handle large amounts of data across distributed nodes, Cassandra is an excellent choice for IoT applications and other distributed systems that generate massive data streams.
E-commerce
Cassandra is a good fit for E-commerce use cases because it has the ability to support things like real-time inventory status and it’s architecture also allows for reduced latency by allowing region specific data to be closer to users.
MariaDB Use Cases
Web Applications
MariaDB is a popular choice for web applications due to its compatibility with MySQL, performance improvements, and open-source nature.
Data Migration
Organizations looking to migrate from MySQL to an open-source alternative can easily transition to MariaDB, thanks to its compatibility and enhanced features.
OLTP Workloads
As a relational database MariaDB is a good fit for any application that requires strong transactional guarantees.
Apache Cassandra Pricing Model
Apache Cassandra is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Cassandra cluster. Additionally, several managed Cassandra services, such as DataStax Astra and Amazon Keyspaces, offer different pricing models based on factors like data storage, request throughput, and support.
MariaDB Pricing Model
MariaDB is an open-source database, which means it is free to download, use, and modify. However, for organizations that require professional support, the MariaDB Corporation offers various subscription plans, including MariaDB SkySQL, a fully managed cloud database service. Pricing for support subscriptions and the SkySQL service depends on the chosen plan, service level, and resource usage.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.