Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Apache Cassandra and M3 so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Apache Cassandra and M3 perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Apache Cassandra vs M3 Breakdown


 
Database Model

Distributed wide-column database

Time series database

Architecture

Apache Cassandra follows a masterless, peer-to-peer architecture, where each node in the cluster is functionally the same and communicates with other nodes using a gossip protocol. Data is distributed across nodes in the cluster using consistent hashing, and Cassandra supports tunable consistency levels for read and write operations. It can be deployed on-premises, in the cloud, or as a managed service

The M3 stack can be deployed on-premises or in the cloud, using containerization technologies like Kubernetes or as a managed service on platforms like AWS or GCP

License

Apache 2.0

Apache 2.0

Use Cases

High write throughput applications, time series data, messaging systems, recommendation engines, IoT

Monitoring, observability, IoT, Real-time analytics, large-scale metrics processing

Scalability

Horizontally scalable with support for data partitioning, replication, and linear scalability as nodes are added

Horizontally scalable, designed for high availability and large-scale deployments

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Apache Cassandra Overview

Apache Cassandra is a highly scalable, distributed, and decentralized NoSQL database designed to handle large amounts of data across many commodity servers. Originally created by Facebook, Cassandra is now an Apache Software Foundation project. Its primary focus is on providing high availability, fault tolerance, and linear scalability, making it a popular choice for applications with demanding workloads and low-latency requirements.

M3 Overview

M3 is a distributed time series database written entirely in Go. It is designed to collect a high volume of monitoring time series data, distribute storage in a horizontally scalable manner, and efficiently leverage hardware resources. M3 was initially developed by Uber as a scalable remote storage backend for Prometheus and Graphite and later open-sourced for broader use.


Apache Cassandra for Time Series Data

Cassandra can be used for handling time series data due to its distributed architecture and support for time-based partitioning. Time series data can be efficiently stored and retrieved using partition keys based on time ranges, ensuring quick access to data points.

M3 for Time Series Data

M3 is specifically designed for time-series data. It is a distributed and scalable time-series database optimized for handling large volumes of high-resolution data points, making it an ideal solution for storing, querying, and analyzing time-series data.

M3’s architecture focuses on providing fast and efficient querying capabilities, as well as high ingestion rates, which are essential for working with time-series data. Its horizontal scalability and high availability ensure that it can handle the demands of large-scale deployments and maintain performance as data volumes grow.


Apache Cassandra Key Concepts

  • Column Family: Similar to a table in a relational database, a column family is a collection of rows, each consisting of a key-value pair.
  • Partition Key: A unique identifier used to distribute data across multiple nodes in the cluster, ensuring even distribution and fast data retrieval.
  • Replication Factor: The number of copies of data stored across different nodes in the cluster to provide fault tolerance and high availability.
  • Consistency Level: A configurable parameter that determines the trade-off between read/write performance and data consistency across the cluster.

M3 Key Concepts

  • Time Series Compression: M3 has the ability to compress time series data, resulting in significant memory and disk savings. It uses two compression algorithms, M3TSZ and protobuf encoding, to achieve efficient data compression.
  • Sharding: M3 uses virtual shards that are assigned to physical nodes. Timeseries keys are hashed to a fixed set of virtual shards, making horizontal scaling and node management seamless.
  • Consistency Levels: M3 provides variable consistency levels for read and write operations, as well as cluster connection operations. Write consistency levels include One (success of a single node), Majority (success of the majority of nodes), and All (success of all nodes). Read consistency level is One, which corresponds to reading from a single nod


Apache Cassandra Architecture

Cassandra uses a masterless, peer-to-peer architecture, in which all nodes are equal, and there is no single point of failure. This design ensures high availability and fault tolerance. Cassandra’s data model is a hybrid between a key-value and column-oriented system, where data is partitioned across nodes based on partition keys and stored in column families. Cassandra supports tunable consistency, allowing users to adjust the balance between data consistency and performance based on their specific needs.

M3 Architecture

M3 is designed to be horizontally scalable and handle high data throughput. It uses fileset files as the primary unit of long-term storage, storing compressed streams of time series values. These files are flushed to disk after a block time window becomes unreachable. M3 has a commit log, equivalent to the commit log or write-ahead-log in other databases, which ensures data integrity. Client Peer streaming is responsible for fetching blocks from peers for bootstrapping purposes. M3 also implements caching policies to optimize efficient reads by determining which flushed blocks are kept in memory.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Apache Cassandra Features

Linear Scalability

Cassandra can scale horizontally, adding nodes to the cluster to accommodate growing workloads and maintain consistent performance.

High Availability

With no single point of failure and support for data replication, Cassandra ensures data is always accessible, even in the event of node failures.

Tunable Consistency

Users can balance between data consistency and performance by adjusting consistency levels based on their application’s requirements.

M3 Features

Commit Log

M3 uses a commit log to ensure data integrity, providing durability for write operations.

Peer Streaming

M3’s client peer streaming fetches data blocks from peers for bootstrapping purposes, optimizing data retrieval and distribution.

Caching Mechanisms

M3 implements various caching policies to efficiently manage memory usage, keeping frequently accessed data blocks in memory for faster reads.


Apache Cassandra Use Cases

Messaging and Social Media Platforms

Cassandra’s high availability and low-latency make it suitable for messaging and social media applications that require fast, consistent access to user data.

IoT and Distributed Systems

With its ability to handle large amounts of data across distributed nodes, Cassandra is an excellent choice for IoT applications and other distributed systems that generate massive data streams.

E-commerce

Cassandra is a good fit for E-commerce use cases because it has the ability to support things like real-time inventory status and it’s architecture also allows for reduced latency by allowing region specific data to be closer to users.

M3 Use Cases

Monitoring and Observability

M3 is particularly suitable for large-scale monitoring and observability tasks, as it can store and manage massive volumes of time-series data generated by infrastructure, applications, and microservices. Organizations can use M3 to analyze, visualize, and detect anomalies in the metrics collected from various sources, enabling them to identify potential issues and optimize their systems.

IoT and Sensor Data

M3 can be used to store and process the vast amounts of time-series data generated by IoT devices and sensors. By handling data from millions of devices and sensors, M3 can provide organizations with valuable insights into the performance, usage patterns, and potential issues of their connected devices. This information can be used for optimization, predictive maintenance, and improving the overall efficiency of IoT systems.

Financial Data Analysis

Financial organizations can use M3 to store and analyze time-series data related to stocks, bonds, commodities, and other financial instruments. By providing fast and efficient querying capabilities, M3 can help analysts and traders make more informed decisions based on historical trends, current market conditions, and potential future developments.


Apache Cassandra Pricing Model

Apache Cassandra is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Cassandra cluster. Additionally, several managed Cassandra services, such as DataStax Astra and Amazon Keyspaces, offer different pricing models based on factors like data storage, request throughput, and support.

M3 Pricing Model

M3 is an open source database and can be used freely, although you will have to account for the cost of managing your infrastructure and the hardware used to run M3. Chronosphere is the co-maintainer of M3 along with Uber and also offers a hosted observability that uses M3 as the backend storage layer.