Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Google BigQuery and StarRocks so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Google BigQuery and StarRocks perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Google BigQuery vs StarRocks Breakdown


 
Database Model

Data warehouse

Data warehouse

Architecture

BigQuery is a fully managed, serverless data warehouse provided by Google Cloud Platform. It is designed for high-performance analytics and utilizes Google’s infrastructure for data processing. BigQuery uses a columnar storage format for fast querying and supports standard SQL. Data is automatically sharded and replicated across multiple availability zones within a Google Cloud region

StarRocks can be deployed on-premises, in the cloud, or in a hybrid environment, depending on your infrastructure preferences and requirements.

License

Closed source

Apache 2.0

Use Cases

Business analytics, large-scale data processing, data integration

Business intelligence, analytics, real-time data processing, large-scale data storage

Scalability

Serverless, petabyte-scale data warehouse that can handle massive amounts of data with no upfront capacity planning required

Horizontally scalable, with support for distributed storage and query processing

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Google BigQuery Overview

Google BigQuery is a fully-managed, serverless data warehouse and analytics platform developed by Google Cloud. Launched in 2011, BigQuery is designed to handle large-scale data processing and querying, enabling users to analyze massive datasets in real-time. With a focus on performance, scalability, and ease of use, BigQuery is suitable for a wide range of data analytics use cases, including business intelligence, log analysis, and machine learning.

StarRocks Overview

StarRocks is an open source high-performance analytical data warehouse that enables real-time, multi-dimensional, and highly concurrent data analysis. It features an MPP (Massively Parallel Processing) architecture and is equipped with a fully vectorized execution engine and a columnar storage engine that supports real-time updates.


Google BigQuery for Time Series Data

BigQuery can be used for storing and analyzing time series data, although it is more focused on traditional data warehouse use cases. BigQuery may struggle for use cases where low latency response times are required

StarRocks for Time Series Data

StarRocks is primarily focused on data warehousing workloads but can be used for time series data. StarRocks can be used for real time analytics and historical data analysis.


Google BigQuery Key Concepts

Some important concepts related to Google BigQuery include:

  • Projects: A project in BigQuery represents a top-level container for resources such as datasets, tables, and views.
  • Datasets: A dataset is a container for tables, views, and other data resources in BigQuery.
  • Tables: Tables are the primary data storage structure in BigQuery and consist of rows and columns.
  • Schema: A schema defines the structure of a table, including column names, data types, and constraints.

StarRocks Key Concepts

  • MPP Architecture: StarRocks utilizes an MPP architecture, which enables parallel processing and distributed execution of queries, allowing for high-performance and scalability.
  • Vectorized Execution Engine: StarRocks employs a fully vectorized execution engine that leverages SIMD (Single Instruction, Multiple Data) instructions to process data in batches, resulting in optimized query performance.
  • Columnar Storage Engine: The columnar storage engine in StarRocks organizes data by column, which improves query performance by only accessing the necessary columns during query execution.
  • Cost-Based Optimizer (CBO): StarRocks includes a fully-customized cost-based optimizer that evaluates different query execution plans and selects the most efficient plan based on estimated costs.
  • Materialized View: StarRocks supports intelligent materialized views, which are precomputed summaries of data that accelerate query performance by providing faster access to aggregated data.


Google BigQuery Architecture

Google BigQuery’s architecture is built on top of Google’s distributed infrastructure and is designed for high performance and scalability. At its core, BigQuery uses a columnar storage format called Capacitor, which enables efficient data compression and fast query performance. Data is automatically partitioned and distributed across multiple storage nodes, providing high availability and fault tolerance. BigQuery’s serverless architecture automatically allocates resources for queries and data storage, eliminating the need for users to manage infrastructure or capacity planning.

StarRocks Architecture

StarRock’s architecture includes a fully vectorized execution engine and a columnar storage engine for efficient data processing and storage. It also incorporates features like a cost-based optimizer and materialized views for optimized query performance. StarRocks supports real-time and batch data ingestion from a variety of sources and enables direct analysis of data stored in data lakes without data migration

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Google BigQuery Features

Columnar Storage

BigQuery’s columnar storage format, Capacitor, enables efficient data compression and fast query performance, making it suitable for large-scale data analytics.

Integration with Google Cloud

BigQuery integrates seamlessly with other Google Cloud services, such as Cloud Storage, Dataflow, and Pub/Sub, making it easy to ingest, process, and analyze data from various sources.

Machine Learning Integration

BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications.

StarRocks Features

Multi-Dimensional Analysis

StarRocks supports multi-dimensional analysis, enabling users to explore data from different dimensions and perspectives.

High Concurrency

StarRocks is designed to handle high levels of concurrency, allowing multiple users to execute queries simultaneously.

Materialized View

StarRocks supports materialized views, which provide precomputed summaries of data for faster query performance.


Google BigQuery Use Cases

Business Intelligence and Reporting

BigQuery is widely used for business intelligence and reporting, enabling users to analyze large volumes of data and generate insights to inform decision-making. Its fast query performance and seamless integration with popular BI tools, such as Google Data Studio and Tableau, make it an ideal solution for this use case.

Machine Learning and Predictive Analytics

BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications. BigQuery’s fast query performance and support for large-scale data processing make it suitable for predictive analytics use cases.

Data Warehousing and ETL

BigQuery’s distributed architecture and columnar storage format make it an excellent choice for data warehousing and ETL (Extract, Transform, Load) workflows. Its seamless integration with other Google Cloud services, such as Cloud Storage and Dataflow, simplifies the process of ingesting and processing data from various sources.

StarRocks Use Cases

Real-Time Analytics

StarRocks is well-suited for real-time analytics scenarios, where users need to analyze data as it arrives, enabling them to make timely and data-driven decisions.

Ad-Hoc Queries

With its high-performance and highly concurrent data analysis capabilities, StarRocks is ideal for ad-hoc querying, allowing users to explore and analyze data interactively.

Data Lake Analytics

StarRocks supports analyzing data directly from data lakes without the need for data migration. This makes it a valuable tool for organizations leveraging data lakes for storage and analysis.


Google BigQuery Pricing Model

Google BigQuery pricing is based on a pay-as-you-go model, with costs determined by data storage, query, and streaming. There are two main components to BigQuery pricing:

  • Storage Pricing: Storage costs are based on the amount of data stored in BigQuery. Users are billed for both active and long-term storage, with long-term storage offered at a discounted rate for infrequently accessed data.
  • Query Pricing: Query costs are based on the amount of data processed during a query. Users can choose between on-demand pricing, where they pay for the data processed per query, or flat-rate pricing, which provides a fixed monthly cost for a certain amount of query capacity.

StarRocks Pricing Model

StarRocks can be deployed on your own hardware using the open source project. There are also a number of commercial vendors offering managed services to run StarRocks in the cloud.