Google BigQuery vs Redis
A detailed comparison
Compare Google BigQuery and Redis for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Google BigQuery and Redis so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Google BigQuery and Redis perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Google BigQuery vs Redis Breakdown
Database Model | Data warehouse |
In-memory database |
Architecture | BigQuery is a fully managed, serverless data warehouse provided by Google Cloud Platform. It is designed for high-performance analytics and utilizes Google’s infrastructure for data processing. BigQuery uses a columnar storage format for fast querying and supports standard SQL. Data is automatically sharded and replicated across multiple availability zones within a Google Cloud region |
Redis can be deployed on-premises, in the cloud, or as a managed service |
License | Closed source |
BSD 3 |
Use Cases | Business analytics, large-scale data processing, data integration |
Caching, message brokering, real-time analytics, session storage, geospatial data processing |
Scalability | Serverless, petabyte-scale data warehouse that can handle massive amounts of data with no upfront capacity planning required |
Horizontally scalable via partitioning and clustering, supports data replication |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Google BigQuery Overview
Google BigQuery is a fully-managed, serverless data warehouse and analytics platform developed by Google Cloud. Launched in 2011, BigQuery is designed to handle large-scale data processing and querying, enabling users to analyze massive datasets in real-time. With a focus on performance, scalability, and ease of use, BigQuery is suitable for a wide range of data analytics use cases, including business intelligence, log analysis, and machine learning.
Redis Overview
Redis, which stands for Remote Dictionary Server, is an open-source, in-memory data structure store that can be used as a database, cache, and message broker. It was created by Salvatore Sanfilippo in 2009 and has since gained significant popularity due to its high performance and flexibility. Redis supports various data structures, such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, and geospatial indexes with radius queries.
Google BigQuery for Time Series Data
BigQuery can be used for storing and analyzing time series data, although it is more focused on traditional data warehouse use cases. BigQuery may struggle for use cases where low latency response times are required
Redis for Time Series Data
Redis has a dedicated module for working with time series data called RedisTimeSeries. RedisTimeSeries offers functionality like downsampling, data retention policies, and specialized queries for time series data in Redis. Being an in-memory database, Redis will be very fast for reading and writing time series data, but due to the cost of RAM compared to disk using Redis could become expensive depending on the size of your dataset. If your use case doesn’t require extremely fast response times, you could save money by going with a more traditional time series database.
Google BigQuery Key Concepts
Some important concepts related to Google BigQuery include:
- Projects: A project in BigQuery represents a top-level container for resources such as datasets, tables, and views.
- Datasets: A dataset is a container for tables, views, and other data resources in BigQuery.
- Tables: Tables are the primary data storage structure in BigQuery and consist of rows and columns.
- Schema: A schema defines the structure of a table, including column names, data types, and constraints.
Redis Key Concepts
- In-memory store: Redis stores data in memory, which allows for faster data access and manipulation compared to disk-based databases .
- Data structures: Redis supports a wide range of data structures, including strings, hashes, lists, sets, and more, which provide flexibility in how data is modeled and stored.
- Persistence: Redis offers optional data persistence, allowing data to be periodically saved to disk or written to a log for durability.
- Pub/Sub: Redis provides a publish/subscribe messaging system, enabling real-time communication between clients without the need for a centralized message broker.
Google BigQuery Architecture
Google BigQuery’s architecture is built on top of Google’s distributed infrastructure and is designed for high performance and scalability. At its core, BigQuery uses a columnar storage format called Capacitor, which enables efficient data compression and fast query performance. Data is automatically partitioned and distributed across multiple storage nodes, providing high availability and fault tolerance. BigQuery’s serverless architecture automatically allocates resources for queries and data storage, eliminating the need for users to manage infrastructure or capacity planning.
Redis Architecture
Redis is a NoSQL database that uses a key-value data model, where each key is associated with a value stored as one of Redis’ supported data structures. The database is single-threaded, which simplifies its internal architecture and reduces contention. Redis can be deployed as a standalone server, a cluster, or a master-replica setup for scalability and high availability. The Redis Cluster mode automatically shards data across multiple nodes, providing data partitioning and fault tolerance.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Google BigQuery Features
Columnar Storage
BigQuery’s columnar storage format, Capacitor, enables efficient data compression and fast query performance, making it suitable for large-scale data analytics.
Integration with Google Cloud
BigQuery integrates seamlessly with other Google Cloud services, such as Cloud Storage, Dataflow, and Pub/Sub, making it easy to ingest, process, and analyze data from various sources.
Machine Learning Integration
BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications.
Redis Features
Atomicity
Redis supports atomic operations on complex data types, allowing developers to perform powerful operations without worrying about race conditions or other concurrent processing issues.
Broad data structure support
Redis supports a range of data structures such as lists, sets, sorted sets, hashes, bitmaps, hyperloglog, and geospatial indexes. This flexibility allows developers to use Redis for a wide variety of tasks by using data structures that are optimized for their data in terms of performance characteristics.
Pub/Sub messaging
Redis provides a publish/subscribe messaging system for real-time communication between clients.
Lua Scripting
Developers can run Lua scripts in the Redis server, enabling complex operations to be executed atomically in the server itself, reducing network round trips.
Google BigQuery Use Cases
Business Intelligence and Reporting
BigQuery is widely used for business intelligence and reporting, enabling users to analyze large volumes of data and generate insights to inform decision-making. Its fast query performance and seamless integration with popular BI tools, such as Google Data Studio and Tableau, make it an ideal solution for this use case.
Machine Learning and Predictive Analytics
BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications. BigQuery’s fast query performance and support for large-scale data processing make it suitable for predictive analytics use cases.
Data Warehousing and ETL
BigQuery’s distributed architecture and columnar storage format make it an excellent choice for data warehousing and ETL (Extract, Transform, Load) workflows. Its seamless integration with other Google Cloud services, such as Cloud Storage and Dataflow, simplifies the process of ingesting and processing data from various sources.
Redis Use Cases
Caching
Redis is often used as a cache to store frequently accessed data and reduce the load on other databases or services, improving application performance and reducing latency.
Task queues
Redis can be used to implement task queues, which are useful for managing tasks that take longer to process and should be executed asynchronously. This is particularly common in web applications, where background tasks can be processed independently of the request/response cycle
Real-time analysis and machine learning
Redis’ high performance and low-latency data access make it suitable for real-time analysis and machine learning applications, such as processing streaming data, media streaming, and handling time-series data. This can be achieved using Redis’ data structures and capabilities like sorted sets, timestamps, and pub/sub messaging.
Google BigQuery Pricing Model
Google BigQuery pricing is based on a pay-as-you-go model, with costs determined by data storage, query, and streaming. There are two main components to BigQuery pricing:
- Storage Pricing: Storage costs are based on the amount of data stored in BigQuery. Users are billed for both active and long-term storage, with long-term storage offered at a discounted rate for infrequently accessed data.
- Query Pricing: Query costs are based on the amount of data processed during a query. Users can choose between on-demand pricing, where they pay for the data processed per query, or flat-rate pricing, which provides a fixed monthly cost for a certain amount of query capacity.
Redis Pricing Model
Redis is open-source software, which means it can be deployed and used freely on your own infrastructure. However, there are also managed Redis services available, such as Redis Enterprise which offer additional features, support, and ease of deployment. Pricing for these services typically depends on factors like the size of the instance, data storage, and data transfer.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.