Google BigQuery vs Prometheus
A detailed comparison
Compare Google BigQuery and Prometheus for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Google BigQuery and Prometheus so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Google BigQuery and Prometheus perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Google BigQuery vs Prometheus Breakdown
Database Model | Data warehouse |
Time series database |
Architecture | BigQuery is a fully managed, serverless data warehouse provided by Google Cloud Platform. It is designed for high-performance analytics and utilizes Google’s infrastructure for data processing. BigQuery uses a columnar storage format for fast querying and supports standard SQL. Data is automatically sharded and replicated across multiple availability zones within a Google Cloud region |
Prometheus uses a pull-based model where it scrapes metrics from configured targets at given intervals. It stores time series data in a custom, efficient, local storage format, and supports multi-dimensional data collection, querying, and alerting. It can be deployed as a single binary on a server or on a container platform like Kubernetes. |
License | Closed source |
Apache 2.0 |
Use Cases | Business analytics, large-scale data processing, data integration |
Monitoring, alerting, observability, system metrics, application metrics |
Scalability | Serverless, petabyte-scale data warehouse that can handle massive amounts of data with no upfront capacity planning required |
Prometheus is designed for reliability and can scale vertically (single node with increased resources) or through federation (hierarchical setup where Prometheus servers scrape metrics from other Prometheus servers) |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Google BigQuery Overview
Google BigQuery is a fully-managed, serverless data warehouse and analytics platform developed by Google Cloud. Launched in 2011, BigQuery is designed to handle large-scale data processing and querying, enabling users to analyze massive datasets in real-time. With a focus on performance, scalability, and ease of use, BigQuery is suitable for a wide range of data analytics use cases, including business intelligence, log analysis, and machine learning.
Prometheus Overview
Prometheus is an open-source monitoring and alerting toolkit initially developed at SoundCloud in 2012. It has since become a widely adopted monitoring solution and a part of the Cloud Native Computing Foundation (CNCF) project. Prometheus focuses on providing real-time insights and alerts for containerized and microservices-based environments. Its primary use case is monitoring infrastructure and applications, with an emphasis on reliability and scalability.
Google BigQuery for Time Series Data
BigQuery can be used for storing and analyzing time series data, although it is more focused on traditional data warehouse use cases. BigQuery may struggle for use cases where low latency response times are required
Prometheus for Time Series Data
Prometheus is specifically designed for time series data, as its primary focus is on monitoring and alerting based on the state of infrastructure and applications. It uses a pull-based model, where the Prometheus server scrapes metrics from the target systems at regular intervals. This model is suitable for monitoring dynamic environments, as it allows for automatic discovery and monitoring of new instances. However, Prometheus is not intended as a general-purpose time series database and might not be the best choice for high cardinality or long-term data storage.
Google BigQuery Key Concepts
Some important concepts related to Google BigQuery include:
- Projects: A project in BigQuery represents a top-level container for resources such as datasets, tables, and views.
- Datasets: A dataset is a container for tables, views, and other data resources in BigQuery.
- Tables: Tables are the primary data storage structure in BigQuery and consist of rows and columns.
- Schema: A schema defines the structure of a table, including column names, data types, and constraints.
Prometheus Key Concepts
- Metric: A numeric representation of a particular aspect of a system, such as CPU usage or memory consumption.
- Time Series: A collection of data points for a metric, indexed by timestamp.
- Label: A key-value pair that provides metadata and context for a metric, enabling more granular querying and aggregation.
- PromQL: Prometheus uses its own query language called PromQL (Prometheus Query Language) for querying time series data and generating alerts.
Google BigQuery Architecture
Google BigQuery’s architecture is built on top of Google’s distributed infrastructure and is designed for high performance and scalability. At its core, BigQuery uses a columnar storage format called Capacitor, which enables efficient data compression and fast query performance. Data is automatically partitioned and distributed across multiple storage nodes, providing high availability and fault tolerance. BigQuery’s serverless architecture automatically allocates resources for queries and data storage, eliminating the need for users to manage infrastructure or capacity planning.
Prometheus Architecture
Prometheus is a single-server, standalone monitoring system that uses a pull-based approach to collect metrics from target systems. It stores time series data in a custom, highly compressed, on-disk format, optimized for fast querying and low resource usage. The architecture of Prometheus is modular and extensible, with components like exporters, service discovery mechanisms, and integrations with other monitoring systems. As a non-distributed system, it lacks built-in clustering or horizontal scalability, but it supports federation, allowing multiple Prometheus servers to share and aggregate data.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Google BigQuery Features
Columnar Storage
BigQuery’s columnar storage format, Capacitor, enables efficient data compression and fast query performance, making it suitable for large-scale data analytics.
Integration with Google Cloud
BigQuery integrates seamlessly with other Google Cloud services, such as Cloud Storage, Dataflow, and Pub/Sub, making it easy to ingest, process, and analyze data from various sources.
Machine Learning Integration
BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications.
Prometheus Features
Pull-based Model
Prometheus collects metrics by actively scraping targets, enabling automatic discovery and monitoring of dynamic environments.
PromQL
The powerful Prometheus Query Language allows for expressive and flexible querying of time series data.
Alerting
Prometheus supports alerting based on user-defined rules and integrates with various alert management and notification systems.
Google BigQuery Use Cases
Business Intelligence and Reporting
BigQuery is widely used for business intelligence and reporting, enabling users to analyze large volumes of data and generate insights to inform decision-making. Its fast query performance and seamless integration with popular BI tools, such as Google Data Studio and Tableau, make it an ideal solution for this use case.
Machine Learning and Predictive Analytics
BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications. BigQuery’s fast query performance and support for large-scale data processing make it suitable for predictive analytics use cases.
Data Warehousing and ETL
BigQuery’s distributed architecture and columnar storage format make it an excellent choice for data warehousing and ETL (Extract, Transform, Load) workflows. Its seamless integration with other Google Cloud services, such as Cloud Storage and Dataflow, simplifies the process of ingesting and processing data from various sources.
Prometheus Use Cases
Infrastructure Monitoring
Prometheus is widely used for monitoring the health and performance of containerized and microservices-based infrastructure, including Kubernetes and Docker environments.
Application Performance Monitoring (APM)
Prometheus can collect custom application metrics using client libraries and monitor application performance in real-time.
Alerting and Anomaly Detection
Prometheus enables organizations to set up alerts based on specific thresholds or conditions, helping them identify and respond to potential issues or anomalies quickly.
Google BigQuery Pricing Model
Google BigQuery pricing is based on a pay-as-you-go model, with costs determined by data storage, query, and streaming. There are two main components to BigQuery pricing:
- Storage Pricing: Storage costs are based on the amount of data stored in BigQuery. Users are billed for both active and long-term storage, with long-term storage offered at a discounted rate for infrequently accessed data.
- Query Pricing: Query costs are based on the amount of data processed during a query. Users can choose between on-demand pricing, where they pay for the data processed per query, or flat-rate pricing, which provides a fixed monthly cost for a certain amount of query capacity.
Prometheus Pricing Model
Prometheus is an open-source project, and there are no licensing fees associated with its use. However, costs can arise from hardware, hosting, and operational expenses when deploying a self-managed Prometheus server. Additionally, several cloud-based managed Prometheus services, such as Grafana Cloud and Weave Cloud, offer different pricing models based on factors like data retention, query rate, and support.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.