Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Google BigQuery and Apache Pinot so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Google BigQuery and Apache Pinot perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Google BigQuery vs Apache Pinot Breakdown


 
Database Model

Data warehouse

Columnar database

Architecture

BigQuery is a fully managed, serverless data warehouse provided by Google Cloud Platform. It is designed for high-performance analytics and utilizes Google’s infrastructure for data processing. BigQuery uses a columnar storage format for fast querying and supports standard SQL. Data is automatically sharded and replicated across multiple availability zones within a Google Cloud region

Pinot can be deployed on-premises, in the cloud, or using a managed service

License

Closed source

Apache 2.0

Use Cases

Business analytics, large-scale data processing, data integration

Real-time analytics, OLAP, user behavior analytics, clickstream analysis, ad tech, log analytics

Scalability

Serverless, petabyte-scale data warehouse that can handle massive amounts of data with no upfront capacity planning required

Horizontally scalable, supports distributed architectures for high availability and performance

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Google BigQuery Overview

Google BigQuery is a fully-managed, serverless data warehouse and analytics platform developed by Google Cloud. Launched in 2011, BigQuery is designed to handle large-scale data processing and querying, enabling users to analyze massive datasets in real-time. With a focus on performance, scalability, and ease of use, BigQuery is suitable for a wide range of data analytics use cases, including business intelligence, log analysis, and machine learning.

Apache Pinot Overview

Apache Pinot is a real-time distributed OLAP datastore, designed to answer complex analytical queries with low latency. It was initially developed at LinkedIn and later open-sourced in 2015. Pinot is well-suited for handling large-scale data and real-time analytics, providing near-instantaneous responses to complex queries on large datasets. It is used by several large organizations, such as LinkedIn, Microsoft, and Uber.


Google BigQuery for Time Series Data

BigQuery can be used for storing and analyzing time series data, although it is more focused on traditional data warehouse use cases. BigQuery may struggle for use cases where low latency response times are required

Apache Pinot for Time Series Data

Apache Pinot is a solid choice for working with time series data due to its columnar storage and real-time ingestion capabilities. Pinot’s ability to ingest data from streams like Apache Kafka ensures that time series data can be analyzed as it is being generated, in addition to having options for bulk ingesting data.


Google BigQuery Key Concepts

Some important concepts related to Google BigQuery include:

  • Projects: A project in BigQuery represents a top-level container for resources such as datasets, tables, and views.
  • Datasets: A dataset is a container for tables, views, and other data resources in BigQuery.
  • Tables: Tables are the primary data storage structure in BigQuery and consist of rows and columns.
  • Schema: A schema defines the structure of a table, including column names, data types, and constraints.

Apache Pinot Key Concepts

  • Segment: A segment is the basic unit of data storage in Pinot. It is a columnar storage format that contains a subset of the table’s data.
  • Table: A table in Pinot is a collection of segments.
  • Controller: The controller manages the metadata and orchestrates data ingestion, query execution, and cluster management.
  • Broker: The broker is responsible for receiving queries, routing them to the appropriate servers, and returning the results to the client.
  • Server: The server stores segments and processes queries on those segments.


Google BigQuery Architecture

Google BigQuery’s architecture is built on top of Google’s distributed infrastructure and is designed for high performance and scalability. At its core, BigQuery uses a columnar storage format called Capacitor, which enables efficient data compression and fast query performance. Data is automatically partitioned and distributed across multiple storage nodes, providing high availability and fault tolerance. BigQuery’s serverless architecture automatically allocates resources for queries and data storage, eliminating the need for users to manage infrastructure or capacity planning.

Apache Pinot Architecture

Pinot is a distributed, columnar datastore that uses a hybrid data model, combining features of both NoSQL and SQL databases. Its architecture consists of three main components: Controller, Broker, and Server. The Controller manages metadata and cluster operations, while Brokers handle query routing and Servers store and process data. Pinot’s columnar storage format enables efficient compression and quick query processing.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Google BigQuery Features

Columnar Storage

BigQuery’s columnar storage format, Capacitor, enables efficient data compression and fast query performance, making it suitable for large-scale data analytics.

Integration with Google Cloud

BigQuery integrates seamlessly with other Google Cloud services, such as Cloud Storage, Dataflow, and Pub/Sub, making it easy to ingest, process, and analyze data from various sources.

Machine Learning Integration

BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications.

Apache Pinot Features

Real-time Ingestion

Pinot supports real-time data ingestion from Kafka and other streaming sources, allowing for up-to-date analytics.

Scalability

Pinot’s distributed architecture and partitioning capabilities enable horizontal scaling to handle large datasets and high query loads.

Low-latency Query Processing

Pinot’s columnar storage format and various performance optimizations allow for near-instantaneous responses to complex queries.


Google BigQuery Use Cases

Business Intelligence and Reporting

BigQuery is widely used for business intelligence and reporting, enabling users to analyze large volumes of data and generate insights to inform decision-making. Its fast query performance and seamless integration with popular BI tools, such as Google Data Studio and Tableau, make it an ideal solution for this use case.

Machine Learning and Predictive Analytics

BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications. BigQuery’s fast query performance and support for large-scale data processing make it suitable for predictive analytics use cases.

Data Warehousing and ETL

BigQuery’s distributed architecture and columnar storage format make it an excellent choice for data warehousing and ETL (Extract, Transform, Load) workflows. Its seamless integration with other Google Cloud services, such as Cloud Storage and Dataflow, simplifies the process of ingesting and processing data from various sources.

Apache Pinot Use Cases

Real-time Analytics

Pinot is designed to support real-time analytics, making it suitable for use cases that require up-to-date insights on large-scale data, such as monitoring and alerting systems, fraud detection, and recommendation engines.

Ad Tech and User Analytics

Apache Pinot is often used in the advertising technology and user analytics space, where low-latency, high-concurrency analytics are crucial for understanding user behavior, optimizing ad campaigns, and personalizing user experiences.

Anomaly Detection and Monitoring

Pinot’s real-time analytics capabilities make it suitable for anomaly detection and monitoring use cases, enabling users to identify unusual patterns or trends in their data and take corrective action as needed.


Google BigQuery Pricing Model

Google BigQuery pricing is based on a pay-as-you-go model, with costs determined by data storage, query, and streaming. There are two main components to BigQuery pricing:

  • Storage Pricing: Storage costs are based on the amount of data stored in BigQuery. Users are billed for both active and long-term storage, with long-term storage offered at a discounted rate for infrequently accessed data.
  • Query Pricing: Query costs are based on the amount of data processed during a query. Users can choose between on-demand pricing, where they pay for the data processed per query, or flat-rate pricing, which provides a fixed monthly cost for a certain amount of query capacity.

Apache Pinot Pricing Model

As an open-source project, Apache Pinot is free to use. However, organizations may incur costs related to hardware, infrastructure, and support when deploying and managing a Pinot cluster. There are no specific pricing options or deployment models tied to Apache Pinot itself.