Google BigQuery vs MariaDB
A detailed comparison
Compare Google BigQuery and MariaDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Google BigQuery and MariaDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Google BigQuery and MariaDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Google BigQuery vs MariaDB Breakdown
Database Model | Data warehouse |
Relational database |
Architecture | BigQuery is a fully managed, serverless data warehouse provided by Google Cloud Platform. It is designed for high-performance analytics and utilizes Google’s infrastructure for data processing. BigQuery uses a columnar storage format for fast querying and supports standard SQL. Data is automatically sharded and replicated across multiple availability zones within a Google Cloud region |
MariaDB can be deployed on-premises, in the cloud, or as a hybrid solution, and is compatible with various operating systems, including Linux, Windows, and macOS. |
License | Closed source |
GNU GPLv2 |
Use Cases | Business analytics, large-scale data processing, data integration |
Web applications, transaction processing, e-commerce |
Scalability | Serverless, petabyte-scale data warehouse that can handle massive amounts of data with no upfront capacity planning required |
Supports replication and sharding for horizontal scaling, as well as query optimization and caching for improved performance |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Google BigQuery Overview
Google BigQuery is a fully-managed, serverless data warehouse and analytics platform developed by Google Cloud. Launched in 2011, BigQuery is designed to handle large-scale data processing and querying, enabling users to analyze massive datasets in real-time. With a focus on performance, scalability, and ease of use, BigQuery is suitable for a wide range of data analytics use cases, including business intelligence, log analysis, and machine learning.
MariaDB Overview
MariaDB is an open-source relational database management system (RDBMS) that was created as a fork of MySQL in 2009 by the original developers of MySQL, led by Michael Widenius. The primary goal of MariaDB was to provide an open-source and community-driven alternative to MySQL, which was acquired by Oracle Corporation in 2008. MariaDB is compatible with MySQL and has enhanced features, better performance, and improved security. It is widely used by organizations worldwide and is supported by the MariaDB Foundation, which ensures its continued open-source development.
Google BigQuery for Time Series Data
BigQuery can be used for storing and analyzing time series data, although it is more focused on traditional data warehouse use cases. BigQuery may struggle for use cases where low latency response times are required
MariaDB for Time Series Data
While MariaDB is not specifically designed for time series data, it can be used to store, process, and analyze time series data due to its flexible and extensible architecture. SQL support, along with analytics optimized storage engines like ColumnStore make it suitable for handling time series data at smaller levels of data volume.
Google BigQuery Key Concepts
Some important concepts related to Google BigQuery include:
- Projects: A project in BigQuery represents a top-level container for resources such as datasets, tables, and views.
- Datasets: A dataset is a container for tables, views, and other data resources in BigQuery.
- Tables: Tables are the primary data storage structure in BigQuery and consist of rows and columns.
- Schema: A schema defines the structure of a table, including column names, data types, and constraints.
MariaDB Key Concepts
- Storage Engines: MariaDB supports multiple storage engines, each optimized for specific types of workloads or data storage requirements. Examples include InnoDB, MyISAM, Aria, and ColumnStore.
- Galera Cluster: A synchronous, multi-master replication solution for MariaDB that allows for high availability, fault tolerance, and load balancing.
- MaxScale: A database proxy for MariaDB that provides advanced features such as query routing, load balancing, and security.
- Connectors: MariaDB provides a variety of connectors to allow applications to interact with the database using various programming languages and APIs.
Google BigQuery Architecture
Google BigQuery’s architecture is built on top of Google’s distributed infrastructure and is designed for high performance and scalability. At its core, BigQuery uses a columnar storage format called Capacitor, which enables efficient data compression and fast query performance. Data is automatically partitioned and distributed across multiple storage nodes, providing high availability and fault tolerance. BigQuery’s serverless architecture automatically allocates resources for queries and data storage, eliminating the need for users to manage infrastructure or capacity planning.
MariaDB Architecture
MariaDB is a relational database that uses the SQL language for querying and data manipulation. Its architecture is based on a client-server model, with clients interacting with the server through various connectors and APIs. MariaDB supports multiple storage engines, allowing users to choose the most suitable engine for their specific use case. The database also offers replication and clustering options for high availability and load balancing.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Google BigQuery Features
Columnar Storage
BigQuery’s columnar storage format, Capacitor, enables efficient data compression and fast query performance, making it suitable for large-scale data analytics.
Integration with Google Cloud
BigQuery integrates seamlessly with other Google Cloud services, such as Cloud Storage, Dataflow, and Pub/Sub, making it easy to ingest, process, and analyze data from various sources.
Machine Learning Integration
BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications.
MariaDB Features
Compatibility
MariaDB is fully compatible with MySQL, making it easy to migrate existing MySQL applications and databases.
Storage Engines
MariaDB supports multiple storage engines, allowing users to choose the best option for their specific use case.
Replication and Clustering
MariaDB offers built-in replication and supports Galera Cluster for high availability, fault tolerance, and load balancing. Security: MariaDB provides advanced security features such as data encryption, secure connections, and role-based access control.
Google BigQuery Use Cases
Business Intelligence and Reporting
BigQuery is widely used for business intelligence and reporting, enabling users to analyze large volumes of data and generate insights to inform decision-making. Its fast query performance and seamless integration with popular BI tools, such as Google Data Studio and Tableau, make it an ideal solution for this use case.
Machine Learning and Predictive Analytics
BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications. BigQuery’s fast query performance and support for large-scale data processing make it suitable for predictive analytics use cases.
Data Warehousing and ETL
BigQuery’s distributed architecture and columnar storage format make it an excellent choice for data warehousing and ETL (Extract, Transform, Load) workflows. Its seamless integration with other Google Cloud services, such as Cloud Storage and Dataflow, simplifies the process of ingesting and processing data from various sources.
MariaDB Use Cases
Web Applications
MariaDB is a popular choice for web applications due to its compatibility with MySQL, performance improvements, and open-source nature.
Data Migration
Organizations looking to migrate from MySQL to an open-source alternative can easily transition to MariaDB, thanks to its compatibility and enhanced features.
OLTP Workloads
As a relational database MariaDB is a good fit for any application that requires strong transactional guarantees.
Google BigQuery Pricing Model
Google BigQuery pricing is based on a pay-as-you-go model, with costs determined by data storage, query, and streaming. There are two main components to BigQuery pricing:
- Storage Pricing: Storage costs are based on the amount of data stored in BigQuery. Users are billed for both active and long-term storage, with long-term storage offered at a discounted rate for infrequently accessed data.
- Query Pricing: Query costs are based on the amount of data processed during a query. Users can choose between on-demand pricing, where they pay for the data processed per query, or flat-rate pricing, which provides a fixed monthly cost for a certain amount of query capacity.
MariaDB Pricing Model
MariaDB is an open-source database, which means it is free to download, use, and modify. However, for organizations that require professional support, the MariaDB Corporation offers various subscription plans, including MariaDB SkySQL, a fully managed cloud database service. Pricing for support subscriptions and the SkySQL service depends on the chosen plan, service level, and resource usage.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.