Google BigQuery vs AWS DynamoDB
A detailed comparison
Compare Google BigQuery and AWS DynamoDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Google BigQuery and AWS DynamoDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Google BigQuery and AWS DynamoDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Google BigQuery vs AWS DynamoDB Breakdown
Database Model | Data warehouse |
Key-value and document store |
Architecture | BigQuery is a fully managed, serverless data warehouse provided by Google Cloud Platform. It is designed for high-performance analytics and utilizes Google’s infrastructure for data processing. BigQuery uses a columnar storage format for fast querying and supports standard SQL. Data is automatically sharded and replicated across multiple availability zones within a Google Cloud region |
DynamoDB is a fully managed, serverless NoSQL database provided by Amazon Web Services (AWS). It uses a single-digit millisecond latency for high-performance use cases and supports both key-value and document data models. Data is partitioned and replicated across multiple availability zones within an AWS region, and DynamoDB supports eventual or strong consistency for read operations |
License | Closed source |
Closed source |
Use Cases | Business analytics, large-scale data processing, data integration |
Serverless web applications, real-time bidding platforms, gaming leaderboards, IoT data management, high-velocity data processing |
Scalability | Serverless, petabyte-scale data warehouse that can handle massive amounts of data with no upfront capacity planning required |
Automatically scales to handle large amounts of read and write throughput, supports on-demand capacity and auto-scaling, global tables for multi-region replication |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Google BigQuery Overview
Google BigQuery is a fully-managed, serverless data warehouse and analytics platform developed by Google Cloud. Launched in 2011, BigQuery is designed to handle large-scale data processing and querying, enabling users to analyze massive datasets in real-time. With a focus on performance, scalability, and ease of use, BigQuery is suitable for a wide range of data analytics use cases, including business intelligence, log analysis, and machine learning.
AWS DynamoDB Overview
Amazon DynamoDB is a managed NoSQL database service provided by AWS. It was first introduced in 2012, and it was designed to provide low-latency, high-throughput performance. DynamoDB is built on the principles of the Dynamo paper, which was published by Amazon engineers in 2007, and it aims to offer a highly available, scalable, and distributed key-value store.
Google BigQuery for Time Series Data
BigQuery can be used for storing and analyzing time series data, although it is more focused on traditional data warehouse use cases. BigQuery may struggle for use cases where low latency response times are required
AWS DynamoDB for Time Series Data
DynamoDB can be used with time series data, although it may not be the most optimized solution compared to specialized time series databases. To store time series data in DynamoDB, you can use a composite primary key with a partition key for the entity identifier and a sort key for the timestamp. This allows you to efficiently query data for a specific entity and time range. However, DynamoDB’s main weakness when dealing with time series data is its lack of built-in support for data aggregation and downsampling, which are common requirements for time series analysis. You may need to perform these operations in your application or use additional services like AWS Lambda to process the data.
Google BigQuery Key Concepts
Some important concepts related to Google BigQuery include:
- Projects: A project in BigQuery represents a top-level container for resources such as datasets, tables, and views.
- Datasets: A dataset is a container for tables, views, and other data resources in BigQuery.
- Tables: Tables are the primary data storage structure in BigQuery and consist of rows and columns.
- Schema: A schema defines the structure of a table, including column names, data types, and constraints.
AWS DynamoDB Key Concepts
Some of the key terms and concepts specific to DynamoDB include:
- Tables: In DynamoDB, data is stored in tables, which are containers for items. Each table has a primary key that uniquely identifies each item in the table.
- Items: Items are individual records in a DynamoDB table, and they consist of one or more attributes.
- Attributes: Attributes are key-value pairs that make up an item in a table. DynamoDB supports scalar, document, and set data types for attributes.
- Primary Key: The primary key uniquely identifies each item in a table, and it can be either a single-attribute partition key or a composite partition-sort key.
Google BigQuery Architecture
Google BigQuery’s architecture is built on top of Google’s distributed infrastructure and is designed for high performance and scalability. At its core, BigQuery uses a columnar storage format called Capacitor, which enables efficient data compression and fast query performance. Data is automatically partitioned and distributed across multiple storage nodes, providing high availability and fault tolerance. BigQuery’s serverless architecture automatically allocates resources for queries and data storage, eliminating the need for users to manage infrastructure or capacity planning.
AWS DynamoDB Architecture
DynamoDB is a NoSQL database that uses a key-value store and document data model. It is designed to provide high availability, durability, and scalability by automatically partitioning data across multiple servers and using replication to ensure fault tolerance. Some of the main components of DynamoDB include:
- Partitioning: DynamoDB automatically partitions data based on the partition key, which ensures that data is evenly distributed across multiple storage nodes.
- Replication: DynamoDB replicates data across multiple availability zones within an AWS region, providing high availability and durability.
- Consistency: DynamoDB offers two consistency models: eventual consistency and strong consistency, allowing you to choose the appropriate level of consistency for your application.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Google BigQuery Features
Columnar Storage
BigQuery’s columnar storage format, Capacitor, enables efficient data compression and fast query performance, making it suitable for large-scale data analytics.
Integration with Google Cloud
BigQuery integrates seamlessly with other Google Cloud services, such as Cloud Storage, Dataflow, and Pub/Sub, making it easy to ingest, process, and analyze data from various sources.
Machine Learning Integration
BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications.
AWS DynamoDB Features
Auto scaling
DynamoDB can automatically scale its read and write capacity based on the workload, allowing you to maintain consistent performance without over-provisioning resources.
Backup and restore
DynamoDB provides built-in support for point-in-time recovery, enabling you to restore your table to a previous state within the last 35 days.
Global tables
DynamoDB global tables enable you to replicate your table across multiple AWS regions, providing low-latency access and data redundancy for global applications.
Streams
DynamoDB Streams capture item-level modifications in your table and can be used to trigger AWS Lambda functions for real-time processing or to synchronize data with other AWS services.
Google BigQuery Use Cases
Business Intelligence and Reporting
BigQuery is widely used for business intelligence and reporting, enabling users to analyze large volumes of data and generate insights to inform decision-making. Its fast query performance and seamless integration with popular BI tools, such as Google Data Studio and Tableau, make it an ideal solution for this use case.
Machine Learning and Predictive Analytics
BigQuery ML enables users to create and deploy machine learning models directly within BigQuery, simplifying the process of building and deploying machine learning applications. BigQuery’s fast query performance and support for large-scale data processing make it suitable for predictive analytics use cases.
Data Warehousing and ETL
BigQuery’s distributed architecture and columnar storage format make it an excellent choice for data warehousing and ETL (Extract, Transform, Load) workflows. Its seamless integration with other Google Cloud services, such as Cloud Storage and Dataflow, simplifies the process of ingesting and processing data from various sources.
AWS DynamoDB Use Cases
Session management
DynamoDB can be used to store session data for web applications, providing fast and scalable access to session information.
Gaming
DynamoDB can be used to store player data, game state, and other game-related information for online games, providing low-latency and high-throughput performance.
Internet of Things
DynamoDB can be used to store and process sensor data from IoT devices, enabling real-time monitoring and analysis of device data.
Google BigQuery Pricing Model
Google BigQuery pricing is based on a pay-as-you-go model, with costs determined by data storage, query, and streaming. There are two main components to BigQuery pricing:
- Storage Pricing: Storage costs are based on the amount of data stored in BigQuery. Users are billed for both active and long-term storage, with long-term storage offered at a discounted rate for infrequently accessed data.
- Query Pricing: Query costs are based on the amount of data processed during a query. Users can choose between on-demand pricing, where they pay for the data processed per query, or flat-rate pricing, which provides a fixed monthly cost for a certain amount of query capacity.
AWS DynamoDB Pricing Model
DynamoDB offers two pricing options: provisioned capacity and on-demand capacity. With provisioned capacity, you specify the number of reads and writes per second that you expect your application to require, and you are charged based on the amount of provisioned capacity. This pricing model is suitable for applications with predictable traffic or gradually ramping traffic. You can use auto scaling to adjust your table’s capacity automatically based on the specified utilization rate, ensuring application performance while reducing costs.
On the other hand, with on-demand capacity, you pay per request for the data reads and writes your application performs on your tables. You do not need to specify how much read and write throughput you expect your application to perform, as DynamoDB instantly accommodates your workloads as they ramp up or down. This pricing model is suitable for applications with fluctuating or unpredictable traffic patterns.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.