Azure Data Explorer vs MariaDB
A detailed comparison
Compare Azure Data Explorer and MariaDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Azure Data Explorer and MariaDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Azure Data Explorer and MariaDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Azure Data Explorer vs MariaDB Breakdown
Database Model | Columnar database |
Relational database |
Architecture | ADX can be deployed in the Azure cloud as a managed service and is easily integrated with other Azure services and tools for seamless data processing and analytics. |
MariaDB can be deployed on-premises, in the cloud, or as a hybrid solution, and is compatible with various operating systems, including Linux, Windows, and macOS. |
License | Closed source |
GNU GPLv2 |
Use Cases | Log and telemetry data analysis, real-time analytics, security and compliance analysis, IoT data processing |
Web applications, transaction processing, e-commerce |
Scalability | Highly scalable with support for horizontal scaling, sharding, and partitioning |
Supports replication and sharding for horizontal scaling, as well as query optimization and caching for improved performance |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Azure Data Explorer Overview
Azure Data Explorer is a cloud-based, fully managed, big data analytics platform offered as part of the Microsoft Azure platform. It was announced by Microsoft in 2018 and is available as a PaaS offering. Azure Data Explorer provides high-performance capabilities for ingesting and querying telemetry, logs, and time series data.
MariaDB Overview
MariaDB is an open-source relational database management system (RDBMS) that was created as a fork of MySQL in 2009 by the original developers of MySQL, led by Michael Widenius. The primary goal of MariaDB was to provide an open-source and community-driven alternative to MySQL, which was acquired by Oracle Corporation in 2008. MariaDB is compatible with MySQL and has enhanced features, better performance, and improved security. It is widely used by organizations worldwide and is supported by the MariaDB Foundation, which ensures its continued open-source development.
Azure Data Explorer for Time Series Data
Azure Data Explorer is well-suited for handling time series data. Its high-performance capabilities and ability to ingest large volumes of data make it suitable for analyzing and querying time series data in near real-time. With its advanced query operators, such as calculated columns, searching and filtering on rows, group by-aggregates, and joins, Azure Data Explorer enables efficient analysis of time series data. Its scalable architecture and distributed nature ensure that it can handle the velocity and volume requirements of time series data effectively.
MariaDB for Time Series Data
While MariaDB is not specifically designed for time series data, it can be used to store, process, and analyze time series data due to its flexible and extensible architecture. SQL support, along with analytics optimized storage engines like ColumnStore make it suitable for handling time series data at smaller levels of data volume.
Azure Data Explorer Key Concepts
- Relational Data Model: Azure Data Explorer is a distributed database based on relational database management systems. It supports entities such as databases, tables, functions, and columns. Unlike traditional RDBMS, Azure Data Explorer does not enforce constraints like key uniqueness, primary keys, or foreign keys. Instead, the necessary relationships are established at query time.
- Kusto Query Language (KQL): Azure Data Explorer uses KQL, a powerful and expressive query language, to enable users to explore and analyze their data with ease.
- Extents: In Azure Data Explorer, data is organized into units called extents, which are immutable, compressed sets of records that can be efficiently stored and queried.
MariaDB Key Concepts
- Storage Engines: MariaDB supports multiple storage engines, each optimized for specific types of workloads or data storage requirements. Examples include InnoDB, MyISAM, Aria, and ColumnStore.
- Galera Cluster: A synchronous, multi-master replication solution for MariaDB that allows for high availability, fault tolerance, and load balancing.
- MaxScale: A database proxy for MariaDB that provides advanced features such as query routing, load balancing, and security.
- Connectors: MariaDB provides a variety of connectors to allow applications to interact with the database using various programming languages and APIs.
Azure Data Explorer Architecture
Azure Data Explorer is built on a cloud-native, distributed architecture that supports both NoSQL and SQL-like querying capabilities. It is a columnar storage-based database that leverages compressed, immutable data extents for efficient storage and retrieval. The core components of Azure Data Explorer’s architecture include the Control Plane, Data Management, and Query Processing. The Control Plane is responsible for managing resources and metadata, while the Data Management component handles data ingestion and organization. Query Processing is responsible for executing queries and returning results to users.
MariaDB Architecture
MariaDB is a relational database that uses the SQL language for querying and data manipulation. Its architecture is based on a client-server model, with clients interacting with the server through various connectors and APIs. MariaDB supports multiple storage engines, allowing users to choose the most suitable engine for their specific use case. The database also offers replication and clustering options for high availability and load balancing.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Azure Data Explorer Features
High-performance data ingestion
Azure Data Explorer can ingest data at a rate of 200 MB per second per node, offering fast and efficient data ingestion capabilities.
Data visualization
Azure Data Explorer integrates seamlessly with popular data visualization tools like Power BI, Grafana, and Jupyter Notebooks, allowing users to easily visualize and analyze their data.
Advanced analytics
The Kusto Query Language (KQL) supports advanced analytics features such as time series analysis, pattern recognition, and anomaly detection, enabling users to gain deeper insights from their data.
Flexible schema
Unlike traditional relational databases, Azure Data Explorer does not enforce constraints like key uniqueness, primary keys, or foreign keys. This flexibility allows for dynamic schema changes and the ability to handle semi-structured and unstructured data.
MariaDB Features
Compatibility
MariaDB is fully compatible with MySQL, making it easy to migrate existing MySQL applications and databases.
Storage Engines
MariaDB supports multiple storage engines, allowing users to choose the best option for their specific use case.
Replication and Clustering
MariaDB offers built-in replication and supports Galera Cluster for high availability, fault tolerance, and load balancing. Security: MariaDB provides advanced security features such as data encryption, secure connections, and role-based access control.
Azure Data Explorer Use Cases
Log analytics
Azure Data Explorer is commonly used for log analytics, where it can ingest, store, and analyze large volumes of log data generated by applications, servers, and infrastructure. Organizations can use Azure Data Explorer to monitor application performance, troubleshoot issues, detect anomalies, and gain insights into user behavior. The ability to analyze log data in near real-time enables proactive issue resolution and improved operational efficiency.
Telemetry analytics
Azure Data Explorer is well-suited for telemetry analytics, where it can process and analyze data generated by IoT devices, sensors, and applications. Organizations can use Azure Data Explorer to monitor device health, optimize resource utilization, and detect anomalies in telemetry data. The platform’s scalability and high-performance capabilities make it ideal for handling the large volumes of data generated by IoT devices.
Time series analysis
Azure Data Explorer is used for time series analysis, where it can ingest and analyze time-stamped data points collected over time. This use case is applicable in various industries, including finance, healthcare, manufacturing, and energy. Organizations can use Azure Data Explorer to analyze trends, detect patterns, and forecast future events based on historical time series data. The platform’s advanced query operators and real-time analysis capabilities enable organizations to derive valuable insights from time series data.
MariaDB Use Cases
Web Applications
MariaDB is a popular choice for web applications due to its compatibility with MySQL, performance improvements, and open-source nature.
Data Migration
Organizations looking to migrate from MySQL to an open-source alternative can easily transition to MariaDB, thanks to its compatibility and enhanced features.
OLTP Workloads
As a relational database MariaDB is a good fit for any application that requires strong transactional guarantees.
Azure Data Explorer Pricing Model
Azure Data Explorer’s pricing model is based on a pay-as-you-go approach, where customers are billed based on their usage of the service. The pricing is determined by factors such as the amount of data ingested, the amount of data stored, and the number of queries executed. Additionally, customers can choose between different pricing tiers that offer varying levels of performance and features. Azure Data Explorer also provides options for reserved capacity, which allows customers to reserve resources for a fixed period of time at a discounted rate.
MariaDB Pricing Model
MariaDB is an open-source database, which means it is free to download, use, and modify. However, for organizations that require professional support, the MariaDB Corporation offers various subscription plans, including MariaDB SkySQL, a fully managed cloud database service. Pricing for support subscriptions and the SkySQL service depends on the chosen plan, service level, and resource usage.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.