Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Amazon Timestream for LiveAnalytics and OpenTSDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Amazon Timestream for LiveAnalytics and OpenTSDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Amazon Timestream for LiveAnalytics vs OpenTSDB Breakdown


 
Database Model

Time series database

Time series database

Architecture

Timestream is a fully managed, serverless time series database service that is only available on AWS.

OpenTSDB can be deployed on-premises or in the cloud, with HBase running on a distributed cluster of nodes.

License

Closed source

GNU LGPLv2.1

Use Cases

IoT, DevOps, time series analytics

Monitoring, observability, IoT, log data storage

Scalability

Serverless and automatically scalable, handling ingestion, storage, and query workload without manual intervention

Horizontally scalable across multiple nodes using HBase as its storage backend

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Amazon Timestream for LiveAnalytics Overview

Timestream for LiveAnalytics is a fully managed, serverless time series database service developed by AWS. Launched in 2020, Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it an ideal choice for IoT, monitoring, and analytics applications that require high ingestion rates, efficient storage, and fast querying capabilities. As a part of the AWS ecosystem, Timestream for LiveAnalytics easily integrates with other AWS services, simplifying the process of building and deploying time series applications in the cloud. AWS also offers Timestream for InfluxDB which is a managed version of InfluxDB that is compatible with InfluxDB 2.x APIs and released in partnership with InfluxData.

OpenTSDB Overview

OpenTSDB (Open Time Series Database) is an open-source, distributed, and scalable time series database built on top of Apache HBase, a NoSQL database. OpenTSDB was designed to address the growing need for storing and processing large volumes of time series data generated by various sources, such as IoT devices, sensors, and monitoring systems. It was initially developed by StumbleUpon in 2010 and later became an independent project with an active community of contributors.


Amazon Timestream for LiveAnalytics for Time Series Data

Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it a suitable choice for a wide range of applications that require high ingestion rates and efficient storage. Its dual-tiered storage architecture, consisting of the memory Store and magnetic Store, allows users to manage data retention and optimize storage costs based on data age and access patterns. Additionally, Timestream supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.

OpenTSDB for Time Series Data

OpenTSDB is designed for time series data storage and analysis, making it an ideal choice for managing large scale time series datasets. Its architecture enables high write and query performance, and it can handle millions of data points per second with minimal resource consumption. OpenTSDB’s flexible querying capabilities allow users to perform complex analysis on time series data efficiently.


Amazon Timestream for LiveAnalytics Key Concepts

  • Memory Store: In Amazon Timestream for LiveAnalytics, the Memory Store is a component that stores recent, mutable time series data in memory for fast querying and analysis.
  • Magnetic Store: The Magnetic Store in Amazon Timestream for LiveAnalytics is responsible for storing historical, immutable time series data on disk for cost-efficient, long-term storage.
  • Time-to-Live (TTL): Amazon Timestream for LiveAnalytics allows users to set a TTL on their time series data, which determines how long data is retained in the Memory Store before being moved to the Magnetic Store or deleted.

OpenTSDB Key Concepts

  • Data Point: A single measurement in time consisting of a timestamp, metric, value, and associated tags.
  • Metric: A named value that represents a specific aspect of a system, such as CPU usage or temperature.
  • Tags: Key-value pairs associated with data points that provide metadata and help categorize and query the data.


Amazon Timestream for LiveAnalytics Architecture

Amazon Timestream for LiveAnalytics is built on a serverless, distributed architecture that supports SQL-like querying capabilities. Its data model is specifically tailored for time series data, using time-stamped records and a flexible schema that can accommodate varying data granularities and dimensions. The core components of Timestream’s architecture include the Memory Store and the Magnetic Store, which together manage data retention, storage, and querying. The Memory Store is optimized for fast querying of recent data, while the Magnetic Store provides cost-efficient, long-term storage for historical data.

OpenTSDB Architecture

OpenTSDB is built on top of Apache HBase, a distributed and scalable NoSQL database, and relies on its architecture for data storage and management. OpenTSDB stores time series data in HBase tables, with data points organized by metric, timestamp, and tags. The database uses a schema-less data model, which allows for flexibility when adding new metrics and tags. The OpenTSDB architecture also supports horizontal scaling by distributing data across multiple HBase nodes.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Amazon Timestream for LiveAnalytics Features

Serverless architecture

Amazon Timestream for LiveAnalytics serverless architecture eliminates the need for users to manage or provision infrastructure, making it easy to scale and reducing operational overhead.

Dual-tiered storage

Timestream’s dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, automatically manages data retention and optimizes storage costs based on data age and access patterns.

SQL-like querying

Amazon Timestream for LiveAnalytics supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.

Timestream for InfluxDB

For workloads that require near real-time queries with single millisecond latency AWS recommends using Timestream for InfluxDB rather than LiveAnalytics. Timestream for InfluxDB also provides compatibility with InfluxDB APIs for users who want an AWS managed service without having to update their code.

OpenTSDB Features

Scalability

OpenTSDB’s distributed architecture allows for horizontal scaling, ensuring that the database can handle growing volumes of time series data.

Data Compression

OpenTSDB uses various compression techniques to reduce the storage footprint of time series data.

Query Language with time series support

OpenTSDB features a flexible query language that supports aggregation, downsampling, filtering, and other operations for analyzing time series data.


Amazon Timestream for LiveAnalytics Use Cases

IoT applications

Amazon Timestream for LiveAnalytic’s support for high ingestion rates and efficient storage makes it an ideal choice for monitoring and analyzing data from IoT devices, such as sensors and smart appliances.

Devops

LiveAnalytics can be used for general DevOps workloads like monitoring application health and utilization. For use cases that require real time monitoring with the lowest latency possible, AWS recommends using Timestream for InfluxDB.

Analytics

Amazon Timestream for LiveAnalytics can be used to track analytics data like web and application data. The built-in time series analytics functions can then be used to aggregate and analyze data to get valuable insights with increased developer productivity.

OpenTSDB Use Cases

Monitoring and Alerting

OpenTSDB is well-suited for large-scale monitoring and alerting systems that generate vast amounts of time series data from various sources.

IoT Data Storage

OpenTSDB can store and analyze time series data generated by IoT devices, such as sensors and smart appliances, enabling real-time insights and analytics.

Performance Analysis

OpenTSDB’s flexible querying capabilities make it an ideal choice for analyzing system and application performance metrics over time.


Amazon Timestream for LiveAnalytics Pricing Model

Amazon Timestream for LiveAnalytics offers a pay-as-you-go pricing model based on data ingestion, storage, and query execution. Ingestion costs are determined by the volume of data ingested into Timestream, while storage costs are based on the amount of data stored in the Memory Store and Magnetic Store. Query execution costs are calculated based on the amount of data scanned and processed during query execution. Timestream also offers a free tier for users to explore the service and build proof-of-concept applications without incurring costs.

OpenTSDB Pricing Model

OpenTSDB is open-source software, which means it is free to use without any licensing fees. However, the cost of running OpenTSDB depends on the infrastructure required to support the underlying HBase database, such as cloud services or on-premises hardware.