Amazon Timestream for LiveAnalytics vs AWS Redshift
A detailed comparison
Compare Amazon Timestream for LiveAnalytics and AWS Redshift for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Amazon Timestream for LiveAnalytics and AWS Redshift so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Amazon Timestream for LiveAnalytics and AWS Redshift perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Amazon Timestream for LiveAnalytics vs AWS Redshift Breakdown
Database Model | Time series database |
Data warehouse |
Architecture | Timestream is a fully managed, serverless time series database service that is only available on AWS. |
AWS Redshift utilizes a columnar storage format for fast querying and supports standard SQL. Redshift uses a distributed, shared-nothing architecture, where data is partitioned across multiple compute nodes. Each node is further divided into slices, with each slice processing a subset of data in parallel. Redshift can be deployed in a single-node or multi-node cluster, with the latter providing better performance for large datasets. |
License | Closed source |
Closed source |
Use Cases | Monitoring, observability, IoT, real-time analytics |
Business analytics, large-scale data processing, real-time dashboards, data integration, machine learning |
Scalability | Serverless and automatically scalable, handling ingestion, storage, and query workload without manual intervention |
Supports scaling storage and compute independently, with support for adding or removing nodes as needed |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Amazon Timestream for LiveAnalytics Overview
Amazon Timestream for LiveAnalytics is a fully managed, serverless time series database service developed by Amazon Web Services (AWS). Launched in 2020, Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it an ideal choice for IoT, monitoring, and analytics applications that require high ingestion rates, efficient storage, and fast querying capabilities. As a part of the AWS ecosystem, Timestream seamlessly integrates with other AWS services, simplifying the process of building and deploying time series applications in the cloud.
AWS Redshift Overview
Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud. It was launched in 2012 as part of the AWS suite of products. Redshift is designed for analytic workloads and integrates with various data loading and ETL tools, as well as business intelligence and reporting tools. It uses columnar storage to optimize storage costs and improve query performance.
Amazon Timestream for LiveAnalytics for Time Series Data
Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it a suitable choice for a wide range of applications that require high ingestion rates, efficient storage, and fast querying capabilities. Its dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, allows Timestream to automatically manage data retention and optimize storage costs based on data age and access patterns. Additionally, Timestream supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
AWS Redshift for Time Series Data
AWS Redshift can be used for time series data workloads, although Redshift is optimized for more general data warehouse use cases. Users can utilize date and time-based functions to aggregate, filter, and transform time series data. Redshift also offers ‘time-series tables’ which allow data to be stored in tables based on a fixed retention period.
Amazon Timestream for LiveAnalytics Key Concepts
- Memory Store: In Amazon Timestream for LiveAnalytics, the Memory Store is a component that stores recent, mutable time series data in memory for fast querying and analysis.
- Magnetic Store: The Magnetic Store in Amazon Timestream for LiveAnalytics is responsible for storing historical, immutable time series data on disk for cost-efficient, long-term storage.
- Time-to-Live (TTL): Amazon Timestream for LiveAnalytics allows users to set a TTL on their time series data, which determines how long data is retained in the Memory Store before being moved to the Magnetic Store or deleted.
AWS Redshift Key Concepts
- Cluster: A Redshift cluster is a set of nodes, which consists of a leader node and one or more compute nodes. The leader node manages communication with client applications and coordinates query execution among compute nodes.
- Compute Node: These nodes store data and execute queries in parallel. The number of compute nodes in a cluster affects its storage capacity and query performance.
- Columnar Storage: Redshift uses a columnar storage format, which stores data in columns rather than rows. This format improves query performance and reduces storage space requirements.
- Node slices: Compute nodes are divided into slices. Each slice is allocated an equal portion of the node’s memory and disk space, where it processes a portion of the loaded data.
Amazon Timestream for LiveAnalytics Architecture
Amazon Timestream for LiveAnalytics is built on a serverless, distributed architecture that supports SQL-like querying capabilities. Its data model is specifically tailored for time series data, using time-stamped records and a flexible schema that can accommodate varying data granularities and dimensions. The core components of Timestream’s architecture include the Memory Store and the Magnetic Store, which together manage data retention, storage, and querying. The Memory Store is optimized for fast querying of recent data, while the Magnetic Store provides cost-efficient, long-term storage for historical data.
AWS Redshift Architecture
Redshift’s architecture is based on a distributed and shared-nothing architecture. A cluster consists of a leader node and one or more compute nodes. The leader node is responsible for coordinating query execution, while compute nodes store data and execute queries in parallel. Data is stored in a columnar format, which improves query performance and reduces storage space requirements. Redshift uses Massively Parallel Processing (MPP) to distribute and execute queries across multiple nodes, allowing it to scale horizontally and provide high performance for large-scale data warehousing workloads.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Amazon Timestream for LiveAnalytics Features
Serverless architecture
Amazon Timestream for LiveAnalytics serverless architecture eliminates the need for users to manage or provision infrastructure, making it easy to scale and reducing operational overhead.
Dual-tiered storage
Timestream’s dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, automatically manages data retention and optimizes storage costs based on data age and access patterns.
SQL-like querying
Amazon Timestream for LiveAnalytics supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
AWS Redshift Features
Scalability
Redshift allows you to scale your cluster up or down by adding or removing compute nodes, enabling you to adjust your storage capacity and query performance based on your needs.
Performance
Redshift’s columnar storage format and MPP architecture enable it to deliver high-performance query execution for large-scale data warehousing workloads.
Security
Redshift provides a range of security features, including encryption at rest and in transit, network isolation using Amazon Virtual Private Cloud (VPC), and integration with AWS Identity and Access Management (IAM) for access control.
Amazon Timestream for LiveAnalytics Use Cases
IoT device monitoring
Amazon Timestream for LiveAnalytic’s support for high ingestion rates and efficient storage makes it an ideal choice for monitoring and analyzing data from IoT devices, such as sensors and smart appliances.
Application performance monitoring
Timestream’s fast querying capabilities and ability to handle large volumes of time series data make it suitable for application performance monitoring, allowing users to track and analyze key performance indicators in real-time and identify bottlenecks or issues.
Infrastructure monitoring
Amazon Timestream for LiveAnalytics can be used to monitor and analyze infrastructure metrics, such as CPU utilization, memory usage, and network traffic, enabling organizations to optimize resource utilization, identify potential issues, and maintain a high level of performance for their critical systems.
AWS Redshift Use Cases
Data Warehousing
Redshift is designed for large-scale data warehousing workloads, providing a scalable and high-performance solution for storing and analyzing structured data.
Business Intelligence and Reporting
Redshift integrates with various BI and reporting tools, enabling organizations to gain insights from their data and make data-driven decisions.
ETL and Data Integration
Redshift supports data loading and extraction, transformation, and loading (ETL) processes, allowing you to integrate data from various sources and prepare it for analysis.
Amazon Timestream for LiveAnalytics Pricing Model
Amazon Timestream for LiveAnalyticsv offers a pay-as-you-go pricing model based on data ingestion, storage, and query execution. Ingestion costs are determined by the volume of data ingested into Timestream, while storage costs are based on the amount of data stored in the Memory Store and Magnetic Store. Query execution costs are calculated based on the amount of data scanned and processed during query execution. Timestream also offers a free tier for users to explore the service and build proof-of-concept applications without incurring costs.
AWS Redshift Pricing Model
Amazon Redshift offers two pricing models: On-Demand and Reserved Instances. With On-Demand pricing, you pay for the capacity you use on an hourly basis, with no long-term commitments. Reserved Instances offer the option to reserve capacity for a one- or three-year term, with a lower hourly rate compared to On-Demand pricing. In addition to these pricing models, you can also choose between different node types, which offer different amounts of storage, memory, and compute resources.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.