Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Amazon Timestream for LiveAnalytics and Redis so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Amazon Timestream for LiveAnalytics and Redis perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Amazon Timestream for LiveAnalytics vs Redis Breakdown


 
Database Model

Time series database

In-memory database

Architecture

Timestream is a fully managed, serverless time series database service that is only available on AWS.

Redis can be deployed on-premises, in the cloud, or as a managed service

License

Closed source

BSD 3

Use Cases

IoT, DevOps, time series analytics

Caching, message brokering, real-time analytics, session storage, geospatial data processing

Scalability

Serverless and automatically scalable, handling ingestion, storage, and query workload without manual intervention

Horizontally scalable via partitioning and clustering, supports data replication

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Amazon Timestream for LiveAnalytics Overview

Timestream for LiveAnalytics is a fully managed, serverless time series database service developed by AWS. Launched in 2020, Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it an ideal choice for IoT, monitoring, and analytics applications that require high ingestion rates, efficient storage, and fast querying capabilities. As a part of the AWS ecosystem, Timestream for LiveAnalytics easily integrates with other AWS services, simplifying the process of building and deploying time series applications in the cloud. AWS also offers Timestream for InfluxDB which is a managed version of InfluxDB that is compatible with InfluxDB 2.x APIs and released in partnership with InfluxData.

Redis Overview

Redis, which stands for Remote Dictionary Server, is an open-source, in-memory data structure store that can be used as a database, cache, and message broker. It was created by Salvatore Sanfilippo in 2009 and has since gained significant popularity due to its high performance and flexibility. Redis supports various data structures, such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, and geospatial indexes with radius queries.


Amazon Timestream for LiveAnalytics for Time Series Data

Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it a suitable choice for a wide range of applications that require high ingestion rates and efficient storage. Its dual-tiered storage architecture, consisting of the memory Store and magnetic Store, allows users to manage data retention and optimize storage costs based on data age and access patterns. Additionally, Timestream supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.

Redis for Time Series Data

Redis has a dedicated module for working with time series data called RedisTimeSeries. RedisTimeSeries offers functionality like downsampling, data retention policies, and specialized queries for time series data in Redis. Being an in-memory database, Redis will be very fast for reading and writing time series data, but due to the cost of RAM compared to disk using Redis could become expensive depending on the size of your dataset. If your use case doesn’t require extremely fast response times, you could save money by going with a more traditional time series database.


Amazon Timestream for LiveAnalytics Key Concepts

  • Memory Store: In Amazon Timestream for LiveAnalytics, the Memory Store is a component that stores recent, mutable time series data in memory for fast querying and analysis.
  • Magnetic Store: The Magnetic Store in Amazon Timestream for LiveAnalytics is responsible for storing historical, immutable time series data on disk for cost-efficient, long-term storage.
  • Time-to-Live (TTL): Amazon Timestream for LiveAnalytics allows users to set a TTL on their time series data, which determines how long data is retained in the Memory Store before being moved to the Magnetic Store or deleted.

Redis Key Concepts

  • In-memory store: Redis stores data in memory, which allows for faster data access and manipulation compared to disk-based databases .
  • Data structures: Redis supports a wide range of data structures, including strings, hashes, lists, sets, and more, which provide flexibility in how data is modeled and stored.
  • Persistence: Redis offers optional data persistence, allowing data to be periodically saved to disk or written to a log for durability.
  • Pub/Sub: Redis provides a publish/subscribe messaging system, enabling real-time communication between clients without the need for a centralized message broker.


Amazon Timestream for LiveAnalytics Architecture

Amazon Timestream for LiveAnalytics is built on a serverless, distributed architecture that supports SQL-like querying capabilities. Its data model is specifically tailored for time series data, using time-stamped records and a flexible schema that can accommodate varying data granularities and dimensions. The core components of Timestream’s architecture include the Memory Store and the Magnetic Store, which together manage data retention, storage, and querying. The Memory Store is optimized for fast querying of recent data, while the Magnetic Store provides cost-efficient, long-term storage for historical data.

Redis Architecture

Redis is a NoSQL database that uses a key-value data model, where each key is associated with a value stored as one of Redis’ supported data structures. The database is single-threaded, which simplifies its internal architecture and reduces contention. Redis can be deployed as a standalone server, a cluster, or a master-replica setup for scalability and high availability. The Redis Cluster mode automatically shards data across multiple nodes, providing data partitioning and fault tolerance.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Amazon Timestream for LiveAnalytics Features

Serverless architecture

Amazon Timestream for LiveAnalytics serverless architecture eliminates the need for users to manage or provision infrastructure, making it easy to scale and reducing operational overhead.

Dual-tiered storage

Timestream’s dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, automatically manages data retention and optimizes storage costs based on data age and access patterns.

SQL-like querying

Amazon Timestream for LiveAnalytics supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.

Timestream for InfluxDB

For workloads that require near real-time queries with single millisecond latency AWS recommends using Timestream for InfluxDB rather than LiveAnalytics. Timestream for InfluxDB also provides compatibility with InfluxDB APIs for users who want an AWS managed service without having to update their code.

Redis Features

Atomicity

Redis supports atomic operations on complex data types, allowing developers to perform powerful operations without worrying about race conditions or other concurrent processing issues.

Broad data structure support

Redis supports a range of data structures such as lists, sets, sorted sets, hashes, bitmaps, hyperloglog, and geospatial indexes. This flexibility allows developers to use Redis for a wide variety of tasks by using data structures that are optimized for their data in terms of performance characteristics.

Pub/Sub messaging

Redis provides a publish/subscribe messaging system for real-time communication between clients.

Lua Scripting

Developers can run Lua scripts in the Redis server, enabling complex operations to be executed atomically in the server itself, reducing network round trips.


Amazon Timestream for LiveAnalytics Use Cases

IoT applications

Amazon Timestream for LiveAnalytic’s support for high ingestion rates and efficient storage makes it an ideal choice for monitoring and analyzing data from IoT devices, such as sensors and smart appliances.

Devops

LiveAnalytics can be used for general DevOps workloads like monitoring application health and utilization. For use cases that require real time monitoring with the lowest latency possible, AWS recommends using Timestream for InfluxDB.

Analytics

Amazon Timestream for LiveAnalytics can be used to track analytics data like web and application data. The built-in time series analytics functions can then be used to aggregate and analyze data to get valuable insights with increased developer productivity.

Redis Use Cases

Caching

Redis is often used as a cache to store frequently accessed data and reduce the load on other databases or services, improving application performance and reducing latency.

Task queues

Redis can be used to implement task queues, which are useful for managing tasks that take longer to process and should be executed asynchronously. This is particularly common in web applications, where background tasks can be processed independently of the request/response cycle

Real-time analysis and machine learning

Redis’ high performance and low-latency data access make it suitable for real-time analysis and machine learning applications, such as processing streaming data, media streaming, and handling time-series data. This can be achieved using Redis’ data structures and capabilities like sorted sets, timestamps, and pub/sub messaging.


Amazon Timestream for LiveAnalytics Pricing Model

Amazon Timestream for LiveAnalytics offers a pay-as-you-go pricing model based on data ingestion, storage, and query execution. Ingestion costs are determined by the volume of data ingested into Timestream, while storage costs are based on the amount of data stored in the Memory Store and Magnetic Store. Query execution costs are calculated based on the amount of data scanned and processed during query execution. Timestream also offers a free tier for users to explore the service and build proof-of-concept applications without incurring costs.

Redis Pricing Model

Redis is open-source software, which means it can be deployed and used freely on your own infrastructure. However, there are also managed Redis services available, such as Redis Enterprise which offer additional features, support, and ease of deployment. Pricing for these services typically depends on factors like the size of the instance, data storage, and data transfer.