Amazon Timestream for LiveAnalytics vs QuestDB
A detailed comparison
Compare Amazon Timestream for LiveAnalytics and QuestDB for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Amazon Timestream for LiveAnalytics and QuestDB so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Amazon Timestream for LiveAnalytics and QuestDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Amazon Timestream for LiveAnalytics vs QuestDB Breakdown
Database Model | Time series database |
Time series database |
Architecture | Timestream is a fully managed, serverless time series database service that is only available on AWS. |
QuestDB is designed for horizontal scaling, enabling you to distribute data and queries across multiple nodes for increased performance and availability. It can be deployed on-premises, in the cloud, or as a hybrid solution, depending on your infrastructure needs and preferences. |
License | Closed source |
Apache 2.0 |
Use Cases | IoT, DevOps, time series analytics |
Monitoring, observability, IoT, Real-time analytics, Financial services, High-frequency trading |
Scalability | Serverless and automatically scalable, handling ingestion, storage, and query workload without manual intervention |
High-performance with support for horizontal scaling and multi-threading |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Amazon Timestream for LiveAnalytics Overview
Timestream for LiveAnalytics is a fully managed, serverless time series database service developed by AWS. Launched in 2020, Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it an ideal choice for IoT, monitoring, and analytics applications that require high ingestion rates, efficient storage, and fast querying capabilities. As a part of the AWS ecosystem, Timestream for LiveAnalytics easily integrates with other AWS services, simplifying the process of building and deploying time series applications in the cloud. AWS also offers Timestream for InfluxDB which is a managed version of InfluxDB that is compatible with InfluxDB 2.x APIs and released in partnership with InfluxData.
QuestDB Overview
QuestDB is an open-source relational column-oriented database designed specifically for time series and event data. It combines high-performance ingestion capabilities with SQL analytics, making it a powerful tool for managing and analyzing large volumes of time-based data. QuestDB addresses the challenges of handling high throughput and provides a simple way to analyze ingested data through SQL queries. It is well-suited for use cases such as financial market data and application metrics.
Amazon Timestream for LiveAnalytics for Time Series Data
Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it a suitable choice for a wide range of applications that require high ingestion rates and efficient storage. Its dual-tiered storage architecture, consisting of the memory Store and magnetic Store, allows users to manage data retention and optimize storage costs based on data age and access patterns. Additionally, Timestream supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
QuestDB for Time Series Data
QuestDB excels in managing and analyzing time series data. With its high-performance ingestion capabilities, it can handle high data throughput, making it suitable for real-time data ingestion scenarios. QuestDB’s SQL extensions for time series enable users to perform real-time analytics and gain valuable insights from their time-stamped data. Whether it’s financial market data or application metrics, QuestDB simplifies the process of ingesting and analyzing time series data through its fast SQL queries and operational simplicity.
Amazon Timestream for LiveAnalytics Key Concepts
- Memory Store: In Amazon Timestream for LiveAnalytics, the Memory Store is a component that stores recent, mutable time series data in memory for fast querying and analysis.
- Magnetic Store: The Magnetic Store in Amazon Timestream for LiveAnalytics is responsible for storing historical, immutable time series data on disk for cost-efficient, long-term storage.
- Time-to-Live (TTL): Amazon Timestream for LiveAnalytics allows users to set a TTL on their time series data, which determines how long data is retained in the Memory Store before being moved to the Magnetic Store or deleted.
QuestDB Key Concepts
- Time Series: QuestDB focuses on time series data, which represents data points indexed by time. It is optimized for storing and processing time-stamped data efficiently.
- Column-Oriented: QuestDB employs a column-oriented storage format, where data is organized and stored column by column rather than row by row. This format enables efficient compression and faster query performance.
- SQL Extensions: QuestDB extends the SQL language with functionalities specifically tailored for time series data. These extensions facilitate real-time analytics and allow users to leverage familiar SQL constructs for querying time-based data.
Amazon Timestream for LiveAnalytics Architecture
Amazon Timestream for LiveAnalytics is built on a serverless, distributed architecture that supports SQL-like querying capabilities. Its data model is specifically tailored for time series data, using time-stamped records and a flexible schema that can accommodate varying data granularities and dimensions. The core components of Timestream’s architecture include the Memory Store and the Magnetic Store, which together manage data retention, storage, and querying. The Memory Store is optimized for fast querying of recent data, while the Magnetic Store provides cost-efficient, long-term storage for historical data.
QuestDB Architecture
QuestDB follows a hybrid architecture that combines features of columnar and row-based databases. It leverages a column-oriented storage format for efficient compression and query performance while retaining the ability to handle relational data with SQL capabilities. QuestDB supports both SQL and NoSQL-like functionalities, providing users with flexibility in their data modeling and querying approaches. The database consists of multiple components, including the ingestion engine, storage engine, and query engine, working together to ensure high-performance data ingestion and retrieval.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Amazon Timestream for LiveAnalytics Features
Serverless architecture
Amazon Timestream for LiveAnalytics serverless architecture eliminates the need for users to manage or provision infrastructure, making it easy to scale and reducing operational overhead.
Dual-tiered storage
Timestream’s dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, automatically manages data retention and optimizes storage costs based on data age and access patterns.
SQL-like querying
Amazon Timestream for LiveAnalytics supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
Timestream for InfluxDB
For workloads that require near real-time queries with single millisecond latency AWS recommends using Timestream for InfluxDB rather than LiveAnalytics. Timestream for InfluxDB also provides compatibility with InfluxDB APIs for users who want an AWS managed service without having to update their code.
QuestDB Features
High-Performance Ingestion
QuestDB is optimized for high throughput ingestion, allowing users to efficiently ingest large volumes of time series data at high speeds.
Fast SQL Queries
QuestDB provides fast SQL queries for analyzing time series data. It extends the SQL language with time series-specific functionalities to assist with real-time analytics.
Operational Simplicity
QuestDB aims to provide a user-friendly experience with operational simplicity. It supports schema-agnostic ingestion using popular protocols such as InfluxDB line protocol and PostgreSQL wire protocol. Additionally, a REST API is available for bulk imports and exports, simplifying data management tasks.
Amazon Timestream for LiveAnalytics Use Cases
IoT applications
Amazon Timestream for LiveAnalytic’s support for high ingestion rates and efficient storage makes it an ideal choice for monitoring and analyzing data from IoT devices, such as sensors and smart appliances.
Devops
LiveAnalytics can be used for general DevOps workloads like monitoring application health and utilization. For use cases that require real time monitoring with the lowest latency possible, AWS recommends using Timestream for InfluxDB.
Analytics
Amazon Timestream for LiveAnalytics can be used to track analytics data like web and application data. The built-in time series analytics functions can then be used to aggregate and analyze data to get valuable insights with increased developer productivity.
QuestDB Use Cases
Financial Market Data
QuestDB is well-suited for managing and analyzing financial market data. Its high-performance ingestion and fast SQL queries enable efficient processing and analysis of large volumes of market data in real time.
Application Metrics
QuestDB can be used for collecting and analyzing application metrics. Its ability to handle high data throughput and provide real-time analytics capabilities makes it suitable for monitoring and analyzing performance metrics, logs, and other application-related data.
IoT Data Analysis
QuestDB’s high-performance ingestion and time series analytics capabilities make it a valuable tool for analyzing IoT sensor data.
Amazon Timestream for LiveAnalytics Pricing Model
Amazon Timestream for LiveAnalytics offers a pay-as-you-go pricing model based on data ingestion, storage, and query execution. Ingestion costs are determined by the volume of data ingested into Timestream, while storage costs are based on the amount of data stored in the Memory Store and Magnetic Store. Query execution costs are calculated based on the amount of data scanned and processed during query execution. Timestream also offers a free tier for users to explore the service and build proof-of-concept applications without incurring costs.
QuestDB Pricing Model
QuestDB is an open-source project released under the Apache 2 License. It is freely available for usage and does not require any licensing fees. Users can access the source code on GitHub and deploy QuestDB on their own infrastructure without incurring direct costs. QuestDB also offers a managed cloud service.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.