Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Amazon Timestream for LiveAnalytics and Apache Pinot so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how Amazon Timestream for LiveAnalytics and Apache Pinot perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

Amazon Timestream for LiveAnalytics vs Apache Pinot Breakdown


 
Database Model

Time series database

Columnar database

Architecture

Timestream is a fully managed, serverless time series database service that is only available on AWS.

Pinot can be deployed on-premises, in the cloud, or using a managed service

License

Closed source

Apache 2.0

Use Cases

IoT, DevOps, time series analytics

Real-time analytics, OLAP, user behavior analytics, clickstream analysis, ad tech, log analytics

Scalability

Serverless and automatically scalable, handling ingestion, storage, and query workload without manual intervention

Horizontally scalable, supports distributed architectures for high availability and performance

Looking for the most efficient way to get started?

Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.

Amazon Timestream for LiveAnalytics Overview

Timestream for LiveAnalytics is a fully managed, serverless time series database service developed by AWS. Launched in 2020, Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it an ideal choice for IoT, monitoring, and analytics applications that require high ingestion rates, efficient storage, and fast querying capabilities. As a part of the AWS ecosystem, Timestream for LiveAnalytics easily integrates with other AWS services, simplifying the process of building and deploying time series applications in the cloud. AWS also offers Timestream for InfluxDB which is a managed version of InfluxDB that is compatible with InfluxDB 2.x APIs and released in partnership with InfluxData.

Apache Pinot Overview

Apache Pinot is a real-time distributed OLAP datastore, designed to answer complex analytical queries with low latency. It was initially developed at LinkedIn and later open-sourced in 2015. Pinot is well-suited for handling large-scale data and real-time analytics, providing near-instantaneous responses to complex queries on large datasets. It is used by several large organizations, such as LinkedIn, Microsoft, and Uber.


Amazon Timestream for LiveAnalytics for Time Series Data

Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it a suitable choice for a wide range of applications that require high ingestion rates and efficient storage. Its dual-tiered storage architecture, consisting of the memory Store and magnetic Store, allows users to manage data retention and optimize storage costs based on data age and access patterns. Additionally, Timestream supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.

Apache Pinot for Time Series Data

Apache Pinot is a solid choice for working with time series data due to its columnar storage and real-time ingestion capabilities. Pinot’s ability to ingest data from streams like Apache Kafka ensures that time series data can be analyzed as it is being generated, in addition to having options for bulk ingesting data.


Amazon Timestream for LiveAnalytics Key Concepts

  • Memory Store: In Amazon Timestream for LiveAnalytics, the Memory Store is a component that stores recent, mutable time series data in memory for fast querying and analysis.
  • Magnetic Store: The Magnetic Store in Amazon Timestream for LiveAnalytics is responsible for storing historical, immutable time series data on disk for cost-efficient, long-term storage.
  • Time-to-Live (TTL): Amazon Timestream for LiveAnalytics allows users to set a TTL on their time series data, which determines how long data is retained in the Memory Store before being moved to the Magnetic Store or deleted.

Apache Pinot Key Concepts

  • Segment: A segment is the basic unit of data storage in Pinot. It is a columnar storage format that contains a subset of the table’s data.
  • Table: A table in Pinot is a collection of segments.
  • Controller: The controller manages the metadata and orchestrates data ingestion, query execution, and cluster management.
  • Broker: The broker is responsible for receiving queries, routing them to the appropriate servers, and returning the results to the client.
  • Server: The server stores segments and processes queries on those segments.


Amazon Timestream for LiveAnalytics Architecture

Amazon Timestream for LiveAnalytics is built on a serverless, distributed architecture that supports SQL-like querying capabilities. Its data model is specifically tailored for time series data, using time-stamped records and a flexible schema that can accommodate varying data granularities and dimensions. The core components of Timestream’s architecture include the Memory Store and the Magnetic Store, which together manage data retention, storage, and querying. The Memory Store is optimized for fast querying of recent data, while the Magnetic Store provides cost-efficient, long-term storage for historical data.

Apache Pinot Architecture

Pinot is a distributed, columnar datastore that uses a hybrid data model, combining features of both NoSQL and SQL databases. Its architecture consists of three main components: Controller, Broker, and Server. The Controller manages metadata and cluster operations, while Brokers handle query routing and Servers store and process data. Pinot’s columnar storage format enables efficient compression and quick query processing.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

Amazon Timestream for LiveAnalytics Features

Serverless architecture

Amazon Timestream for LiveAnalytics serverless architecture eliminates the need for users to manage or provision infrastructure, making it easy to scale and reducing operational overhead.

Dual-tiered storage

Timestream’s dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, automatically manages data retention and optimizes storage costs based on data age and access patterns.

SQL-like querying

Amazon Timestream for LiveAnalytics supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.

Timestream for InfluxDB

For workloads that require near real-time queries with single millisecond latency AWS recommends using Timestream for InfluxDB rather than LiveAnalytics. Timestream for InfluxDB also provides compatibility with InfluxDB APIs for users who want an AWS managed service without having to update their code.

Apache Pinot Features

Real-time Ingestion

Pinot supports real-time data ingestion from Kafka and other streaming sources, allowing for up-to-date analytics.

Scalability

Pinot’s distributed architecture and partitioning capabilities enable horizontal scaling to handle large datasets and high query loads.

Low-latency Query Processing

Pinot’s columnar storage format and various performance optimizations allow for near-instantaneous responses to complex queries.


Amazon Timestream for LiveAnalytics Use Cases

IoT applications

Amazon Timestream for LiveAnalytic’s support for high ingestion rates and efficient storage makes it an ideal choice for monitoring and analyzing data from IoT devices, such as sensors and smart appliances.

Devops

LiveAnalytics can be used for general DevOps workloads like monitoring application health and utilization. For use cases that require real time monitoring with the lowest latency possible, AWS recommends using Timestream for InfluxDB.

Analytics

Amazon Timestream for LiveAnalytics can be used to track analytics data like web and application data. The built-in time series analytics functions can then be used to aggregate and analyze data to get valuable insights with increased developer productivity.

Apache Pinot Use Cases

Real-time Analytics

Pinot is designed to support real-time analytics, making it suitable for use cases that require up-to-date insights on large-scale data, such as monitoring and alerting systems, fraud detection, and recommendation engines.

Ad Tech and User Analytics

Apache Pinot is often used in the advertising technology and user analytics space, where low-latency, high-concurrency analytics are crucial for understanding user behavior, optimizing ad campaigns, and personalizing user experiences.

Anomaly Detection and Monitoring

Pinot’s real-time analytics capabilities make it suitable for anomaly detection and monitoring use cases, enabling users to identify unusual patterns or trends in their data and take corrective action as needed.


Amazon Timestream for LiveAnalytics Pricing Model

Amazon Timestream for LiveAnalytics offers a pay-as-you-go pricing model based on data ingestion, storage, and query execution. Ingestion costs are determined by the volume of data ingested into Timestream, while storage costs are based on the amount of data stored in the Memory Store and Magnetic Store. Query execution costs are calculated based on the amount of data scanned and processed during query execution. Timestream also offers a free tier for users to explore the service and build proof-of-concept applications without incurring costs.

Apache Pinot Pricing Model

As an open-source project, Apache Pinot is free to use. However, organizations may incur costs related to hardware, infrastructure, and support when deploying and managing a Pinot cluster. There are no specific pricing options or deployment models tied to Apache Pinot itself.