Amazon Timestream for LiveAnalytics vs Mimir
A detailed comparison
Compare Amazon Timestream for LiveAnalytics and Mimir for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of Amazon Timestream for LiveAnalytics and Mimir so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how Amazon Timestream for LiveAnalytics and Mimir perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
Amazon Timestream for LiveAnalytics vs Mimir Breakdown
Database Model | Time series database |
Time series database |
Architecture | Timestream is a fully managed, serverless time series database service that is only available on AWS. |
Grafana Mimir is a time series database designed for high-performance, real-time monitoring, and analytics. It features a distributed architecture, allowing for horizontal scaling across multiple nodes to handle large volumes of data and queries. It can be deployed on-prem due to being open source or as a managed solution hosted by Grafana |
License | Closed source |
APGL 3.0 |
Use Cases | Monitoring, observability, IoT, real-time analytics |
Monitoring, observability, IoT |
Scalability | Serverless and automatically scalable, handling ingestion, storage, and query workload without manual intervention |
Horizontally scalable |
Looking for the most efficient way to get started?
Whether you are looking for cost savings, lower management overhead, or open source, InfluxDB can help.
Amazon Timestream for LiveAnalytics Overview
Amazon Timestream for LiveAnalytics is a fully managed, serverless time series database service developed by Amazon Web Services (AWS). Launched in 2020, Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it an ideal choice for IoT, monitoring, and analytics applications that require high ingestion rates, efficient storage, and fast querying capabilities. As a part of the AWS ecosystem, Timestream seamlessly integrates with other AWS services, simplifying the process of building and deploying time series applications in the cloud.
Mimir Overview
Grafana Mimir is an open-source software project that provides a scalable long-term storage solution for Prometheus. Started at Grafana Labs and announced in 2022, Grafana Mimir aims to become the most scalable and performant open-source time series database for metrics. The project incorporates the knowledge and experience gained by Grafana Labs engineers from running Grafana Enterprise Metrics and Grafana Cloud Metrics at massive scale.
Amazon Timestream for LiveAnalytics for Time Series Data
Amazon Timestream for LiveAnalytics is designed specifically for handling time series data, making it a suitable choice for a wide range of applications that require high ingestion rates, efficient storage, and fast querying capabilities. Its dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, allows Timestream to automatically manage data retention and optimize storage costs based on data age and access patterns. Additionally, Timestream supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
Mimir for Time Series Data
Grafana Mimir is well-suited for handling time series data, making it a suitable choice for scenarios involving metric storage and analysis. It provides long-term storage capabilities for Prometheus, a popular open-source monitoring and alerting system. With Grafana Mimir, users can store and query time series metrics over extended periods, allowing for historical analysis and trend detection. It is especially useful for applications that require scalable and performant storage of time series data for metrics monitoring and observability purposes.
Amazon Timestream for LiveAnalytics Key Concepts
- Memory Store: In Amazon Timestream for LiveAnalytics, the Memory Store is a component that stores recent, mutable time series data in memory for fast querying and analysis.
- Magnetic Store: The Magnetic Store in Amazon Timestream for LiveAnalytics is responsible for storing historical, immutable time series data on disk for cost-efficient, long-term storage.
- Time-to-Live (TTL): Amazon Timestream for LiveAnalytics allows users to set a TTL on their time series data, which determines how long data is retained in the Memory Store before being moved to the Magnetic Store or deleted.
Mimir Key Concepts
- Metrics: In Grafana Mimir, metrics represent the measurements or observations tracked over time. They can include various types of data, such as system metrics, application performance metrics, or sensor data.
- Long-term Storage: Grafana Mimir provides a storage solution specifically tailored for long-term retention of time series data, allowing users to store and query historical metrics over extended periods.
- Microservices: Grafana Mimir adopts a microservices-based architecture, where the system consists of multiple horizontally scalable microservices that can operate independently and in parallel.
Amazon Timestream for LiveAnalytics Architecture
Amazon Timestream for LiveAnalytics is built on a serverless, distributed architecture that supports SQL-like querying capabilities. Its data model is specifically tailored for time series data, using time-stamped records and a flexible schema that can accommodate varying data granularities and dimensions. The core components of Timestream’s architecture include the Memory Store and the Magnetic Store, which together manage data retention, storage, and querying. The Memory Store is optimized for fast querying of recent data, while the Magnetic Store provides cost-efficient, long-term storage for historical data.
Mimir Architecture
Grafana Mimir adopts a microservices-based architecture, where the system comprises multiple horizontally scalable microservices. These microservices can operate independently and in parallel, allowing for efficient distribution of workload and scalability. Grafana Mimir’s components are compiled into a single binary, providing a unified and cohesive system. The architecture is designed to be highly available and multi-tenant, enabling multiple users and applications to utilize the database concurrently. This distributed architecture ensures scalability and resilience in handling large-scale metric storage and retrieval scenarios.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
Amazon Timestream for LiveAnalytics Features
Serverless architecture
Amazon Timestream for LiveAnalytics serverless architecture eliminates the need for users to manage or provision infrastructure, making it easy to scale and reducing operational overhead.
Dual-tiered storage
Timestream’s dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, automatically manages data retention and optimizes storage costs based on data age and access patterns.
SQL-like querying
Amazon Timestream for LiveAnalytics supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
Mimir Features
Scalability
Grafana Mimir is designed to scale horizontally, enabling the system to handle growing data volumes and increasing workloads. Its horizontally scalable microservices architecture allows for seamless expansion and improved performance.
High Availability
Grafana Mimir provides high availability by ensuring redundancy and fault tolerance. It allows for replication and distribution of data across multiple nodes, ensuring data durability and continuous availability of stored metrics.
Long-term Storage
Grafana Mimir offers a dedicated solution for long-term storage of time series metrics. It provides efficient storage and retrieval mechanisms, allowing users to retain and analyze historical metric data over extended periods.
Amazon Timestream for LiveAnalytics Use Cases
IoT device monitoring
Amazon Timestream for LiveAnalytic’s support for high ingestion rates and efficient storage makes it an ideal choice for monitoring and analyzing data from IoT devices, such as sensors and smart appliances.
Application performance monitoring
Timestream’s fast querying capabilities and ability to handle large volumes of time series data make it suitable for application performance monitoring, allowing users to track and analyze key performance indicators in real-time and identify bottlenecks or issues.
Infrastructure monitoring
Amazon Timestream for LiveAnalytics can be used to monitor and analyze infrastructure metrics, such as CPU utilization, memory usage, and network traffic, enabling organizations to optimize resource utilization, identify potential issues, and maintain a high level of performance for their critical systems.
Mimir Use Cases
Metrics Monitoring and Observability
Grafana Mimir is well-suited for monitoring and observability use cases. It enables the storage and analysis of time series metrics, allowing users to monitor the performance, health, and behavior of their systems and applications in real-time.
Long Term Metric Storage
With its focus on providing scalable long-term storage, Grafana Mimir is ideal for applications that require retaining and analyzing historical metric data over extended periods. It allows users to store and query large volumes of time series data generated by Prometheus.
Trend and anomaly detection
By using Mimir for storing long term historical data it can be useful for detecting trends in your metrics and also for comparing current metrics to historical data to detect outliers and anomalies
Amazon Timestream for LiveAnalytics Pricing Model
Amazon Timestream for LiveAnalyticsv offers a pay-as-you-go pricing model based on data ingestion, storage, and query execution. Ingestion costs are determined by the volume of data ingested into Timestream, while storage costs are based on the amount of data stored in the Memory Store and Magnetic Store. Query execution costs are calculated based on the amount of data scanned and processed during query execution. Timestream also offers a free tier for users to explore the service and build proof-of-concept applications without incurring costs.
Mimir Pricing Model
Grafana Mimir is an open-source project, which means it is freely available for usage and does not require any licensing fees. Users can download the source code and deploy Grafana Mimir on their own infrastructure without incurring direct costs. However, it’s important to consider the operational costs associated with hosting and maintaining the database infrastructure.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.