Hashicorp Vault and SQLite Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Hashicorp Vault plugin for Telegraf allows for the collection of metrics from Hashicorp Vault services, facilitating monitoring and operational insights.
Telegraf’s SQL output plugin stores metrics in an SQL database by creating tables dynamically for each metric type. When configured for SQLite, it utilizes a file-based DSN and a minimal SQL schema tailored for lightweight, embedded database usage.
Integration details
Hashicorp Vault
The Hashicorp Vault plugin is designed to collect metrics from Vault agents running within a cluster. It enables Telegraf, an agent for collecting and reporting metrics, to interface with the Vault services, typically listening on a local address such as http://127.0.0.1:8200
. This plugin requires a valid token for authorization, ensuring secure access to the Vault API. Users must configure either a token directly or provide a path to a token file, enhancing flexibility in authentication methods. Proper configuration of the timeout and optional TLS settings further relates to the security and responsiveness of the metrics collection process. As Vault is a critical tool in managing secrets and protecting sensitive data, monitoring its performance and health through this plugin is essential for maintaining operational security and efficiency.
SQLite
The SQL output plugin writes Telegraf metrics to an SQL database using a dynamic schema where each metric type corresponds to a table. For SQLite, the plugin uses the modernc.org/sqlite driver and requires a DSN in the format of a file URI (e.g., ‘file:/path/to/telegraf.db?cache=shared’). This configuration leverages standard ANSI SQL for table creation and data insertion, ensuring compatibility with SQLite’s capabilities.
Configuration
Hashicorp Vault
[[inputs.vault]]
## URL for the Vault agent
# url = "http://127.0.0.1:8200"
## Use Vault token for authorization.
## Vault token configuration is mandatory.
## If both are empty or both are set, an error is thrown.
# token_file = "/path/to/auth/token"
## OR
token = "s.CDDrgg5zPv5ssI0Z2P4qxJj2"
## Set response_timeout (default 5 seconds)
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
SQLite
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "sqlite"
## Data source name
## For SQLite, the DSN is a filename or URL with the scheme "file:".
## Example: "file:/path/to/telegraf.db?cache=shared"
data_source_name = "file:/path/to/telegraf.db?cache=shared"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on the right are the SQL types used when writing to SQLite.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
Input and output integration examples
Hashicorp Vault
-
Centralized Secret Management Monitoring: Utilize the Vault plugin to monitor multiple Vault instances across a distributed system, allowing for a unified view of secret access patterns and system health. This setup can help DevOps teams quickly identify any anomalies in secret access, providing essential insights into security postures across different environments.
-
Audit Logging Integration: Configure this plugin to feed monitoring metrics into an audit logging system, enabling organizations to have a comprehensive view of their Vault interactions. By correlating audit logs with metrics, teams can investigate issues, optimize performance, and ensure compliance with security policies more effectively.
-
Performance Benchmarking During Deployments: During application deployments that interact with Vault, use the plugin to monitor the effects of those deployments on Vault performance. This allows engineering teams to understand how changes impact secret management workflows and to proactively address performance bottlenecks, ensuring smooth deployment processes.
-
Alerting for Threshold Exceedance: Integrate this plugin with alerting mechanisms to notify administrators when metrics exceed predefined thresholds. This proactive monitoring can help teams respond swiftly to potential issues, maintaining system reliability and uptime by allowing them to take action before any serious incidents arise.
SQLite
- Local Monitoring Storage: Configure the plugin to write metrics to a local SQLite database file. This is ideal for lightweight deployments where setting up a full-scale database server is not required.
- Embedded Applications: Use SQLite as the backend for applications embedded in edge devices, benefiting from its file-based architecture and minimal resource requirements.
- Quick Setup for Testing: Leverage SQLite’s ease of use to quickly set up a testing environment for Telegraf metrics collection without the need for external database services.
- Custom Schema Management: Adjust the table creation templates to predefine your schema if you require specific column types or indexes, ensuring compatibility with your application’s needs.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration