Tail and InfluxDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Tail Telegraf plugin collects metrics by tailing specified log files, capturing new log entries in real-time for further analysis.
The InfluxDB plugin writes metrics to the InfluxDB HTTP service, allowing for efficient storage and retrieval of time series data.
Integration details
Tail
The tail plugin is designed to continuously monitor and parse log files, making it ideal for real-time log analysis and monitoring. It mimics the functionality of the Unix tail
command, allowing users to specify a file or pattern and begin reading new lines as they are added. Key features include the ability to follow log-rotated files, start reading from the end of a file, and support various parsing formats for the log messages. Users can customize the plugin through various configuration options, such as specifying file encoding, the method for watching file updates, and filter settings for processing log data. This plugin is particularly valuable in environments where log data is critical for monitoring application performance and diagnosing issues.
InfluxDB
The InfluxDB Telegraf plugin serves to send metrics to the InfluxDB HTTP API, facilitating the storage and query of time series data in a structured manner. Integrating seamlessly with InfluxDB, this plugin provides essential features such as token-based authentication and support for multiple InfluxDB cluster nodes, ensuring reliable and scalable data ingestion. Through its configurability, users can specify options like organization, destination buckets, and HTTP-specific settings, providing flexibility to tailor how data is sent and stored. The plugin also supports secret management for sensitive data, which enhances security in production environments. This plugin is particularly beneficial in modern observability stacks where real-time analytics and storage of time series data are crucial.
Configuration
Tail
[[inputs.tail]]
## File names or a pattern to tail.
## These accept standard unix glob matching rules, but with the addition of
## ** as a "super asterisk". ie:
## "/var/log/**.log" -> recursively find all .log files in /var/log
## "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
## "/var/log/apache.log" -> just tail the apache log file
## "/var/log/log[!1-2]* -> tail files without 1-2
## "/var/log/log[^1-2]* -> identical behavior as above
## See https://github.com/gobwas/glob for more examples
##
files = ["/var/mymetrics.out"]
## Read file from beginning.
# from_beginning = false
## Whether file is a named pipe
# pipe = false
## Method used to watch for file updates. Can be either "inotify" or "poll".
## inotify is supported on linux, *bsd, and macOS, while Windows requires
## using poll. Poll checks for changes every 250ms.
# watch_method = "inotify"
## Maximum lines of the file to process that have not yet be written by the
## output. For best throughput set based on the number of metrics on each
## line and the size of the output's metric_batch_size.
# max_undelivered_lines = 1000
## Character encoding to use when interpreting the file contents. Invalid
## characters are replaced using the unicode replacement character. When set
## to the empty string the data is not decoded to text.
## ex: character_encoding = "utf-8"
## character_encoding = "utf-16le"
## character_encoding = "utf-16be"
## character_encoding = ""
# character_encoding = ""
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
## Set the tag that will contain the path of the tailed file. If you don't want this tag, set it to an empty string.
# path_tag = "path"
## Filters to apply to files before generating metrics
## "ansi_color" removes ANSI colors
# filters = []
## multiline parser/codec
## https://www.elastic.co/guide/en/logstash/2.4/plugins-filters-multiline.html
#[inputs.tail.multiline]
## The pattern should be a regexp which matches what you believe to be an indicator that the field is part of an event consisting of multiple lines of log data.
#pattern = "^\s"
## The field's value must be previous or next and indicates the relation to the
## multi-line event.
#match_which_line = "previous"
## The invert_match can be true or false (defaults to false).
## If true, a message not matching the pattern will constitute a match of the multiline filter and the what will be applied. (vice-versa is also true)
#invert_match = false
## The handling method for quoted text (defaults to 'ignore').
## The following methods are available:
## ignore -- do not consider quotation (default)
## single-quotes -- consider text quoted by single quotes (')
## double-quotes -- consider text quoted by double quotes (")
## backticks -- consider text quoted by backticks (`)
## When handling quotes, escaped quotes (e.g. \") are handled correctly.
#quotation = "ignore"
## The preserve_newline option can be true or false (defaults to false).
## If true, the newline character is preserved for multiline elements,
## this is useful to preserve message-structure e.g. for logging outputs.
#preserve_newline = false
#After the specified timeout, this plugin sends the multiline event even if no new pattern is found to start a new event. The default is 5s.
#timeout = 5s
InfluxDB
[[outputs.influxdb]]
## The full HTTP or UDP URL for your InfluxDB instance.
##
## Multiple URLs can be specified for a single cluster, only ONE of the
## urls will be written to each interval.
# urls = ["unix:///var/run/influxdb.sock"]
# urls = ["udp://127.0.0.1:8089"]
# urls = ["http://127.0.0.1:8086"]
## Local address to bind when connecting to the server
## If empty or not set, the local address is automatically chosen.
# local_address = ""
## The target database for metrics; will be created as needed.
## For UDP url endpoint database needs to be configured on server side.
# database = "telegraf"
## The value of this tag will be used to determine the database. If this
## tag is not set the 'database' option is used as the default.
# database_tag = ""
## If true, the 'database_tag' will not be included in the written metric.
# exclude_database_tag = false
## If true, no CREATE DATABASE queries will be sent. Set to true when using
## Telegraf with a user without permissions to create databases or when the
## database already exists.
# skip_database_creation = false
## Name of existing retention policy to write to. Empty string writes to
## the default retention policy. Only takes effect when using HTTP.
# retention_policy = ""
## The value of this tag will be used to determine the retention policy. If this
## tag is not set the 'retention_policy' option is used as the default.
# retention_policy_tag = ""
## If true, the 'retention_policy_tag' will not be included in the written metric.
# exclude_retention_policy_tag = false
## Write consistency (clusters only), can be: "any", "one", "quorum", "all".
## Only takes effect when using HTTP.
# write_consistency = "any"
## Timeout for HTTP messages.
# timeout = "5s"
## HTTP Basic Auth
# username = "telegraf"
# password = "metricsmetricsmetricsmetrics"
## HTTP User-Agent
# user_agent = "telegraf"
## UDP payload size is the maximum packet size to send.
# udp_payload = "512B"
## Optional TLS Config for use on HTTP connections.
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## HTTP Proxy override, if unset values the standard proxy environment
## variables are consulted to determine which proxy, if any, should be used.
# http_proxy = "http://corporate.proxy:3128"
## Additional HTTP headers
# http_headers = {"X-Special-Header" = "Special-Value"}
## HTTP Content-Encoding for write request body, can be set to "gzip" to
## compress body or "identity" to apply no encoding.
# content_encoding = "gzip"
## When true, Telegraf will output unsigned integers as unsigned values,
## i.e.: "42u". You will need a version of InfluxDB supporting unsigned
## integer values. Enabling this option will result in field type errors if
## existing data has been written.
# influx_uint_support = false
## When true, Telegraf will omit the timestamp on data to allow InfluxDB
## to set the timestamp of the data during ingestion. This is generally NOT
## what you want as it can lead to data points captured at different times
## getting omitted due to similar data.
# influx_omit_timestamp = false
Input and output integration examples
Tail
-
Real-Time Server Health Monitoring: Implement the Tail plugin to parse web server access logs in real-time, providing immediate visibility into user activity, error rates, and performance metrics. By visualizing this log data, operations teams can quickly identify and respond to spikes in traffic or errors, enhancing system reliability and user experience.
-
Centralized Log Management: Utilize the Tail plugin to aggregate logs from multiple sources across a distributed system. By configuring each service to send its logs to a centralized location via the Tail plugin, teams can simplify log analysis and ensure that all relevant data is accessible from a single interface, streamlining troubleshooting processes.
-
Security Incident Detection: Use this plugin to monitor authentication logs for unauthorized access attempts or suspicious activity. By setting up alerts on certain log messages, teams can leverage this plugin to enhance security postures and respond promptly to potential security threats, reducing the risk of breaches and increasing overall system integrity.
-
Dynamic Application Performance Insights: Integrate with analytics tools to create real-time dashboards that display application performance metrics based on log data. This setup not only helps developers diagnose bottlenecks and inefficiencies but also allows for proactive performance tuning and resource allocation, optimizing application behavior under varying loads.
InfluxDB
-
Real-Time System Monitoring: Utilize the InfluxDB plugin to capture and store metrics from a range of system components, such as CPU usage, memory consumption, and disk I/O. By pushing these metrics into InfluxDB, you can create a live dashboard that visualizes system performance in real time. This setup not only helps in identifying performance bottlenecks but also assists in proactive capacity planning by analyzing trends over time.
-
Performance Tracking for Web Applications: Automatically gather and push metrics related to web application performance, such as request durations, error rates, and user interactions, to InfluxDB. By employing this plugin in your monitoring stack, you can use the stored metrics to generate reports and analyses that help understand user behavior and application efficiency, thus guiding development and optimization efforts.
-
IoT Data Aggregation: Leverage the InfluxDB Telegraf plugin to collect sensor data from various IoT devices and store it in a centralized InfluxDB instance. This use case enables you to analyze trends and patterns in environmental or machine data over time, facilitating smarter decisions and predictive maintenance strategies. By integrating IoT data into InfluxDB, organizations can harness the power of historical data analysis to drive innovation and operational efficiency.
-
Analyzing Historical Metrics for Forecasting: Set up the InfluxDB plugin to send historical metric data into InfluxDB and use it to drive forecasting models. By analyzing past performance metrics, you can create predictive models that forecast future trends and demands. This application is particularly useful for business intelligence purposes, helping organizations prepare for fluctuations in resource needs based on historical usage patterns.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration