Syslog and Grafana Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Syslog plugin enables the collection of syslog messages from various sources using standard networking protocols. This functionality is critical for environments where systems need to be monitored and logged efficiently.
This plugin enables Telegraf to stream metrics directly to Grafana dashboards in real-time, leveraging Grafana Live for instantaneous data visualization and operational insights.
Integration details
Syslog
The Syslog plugin for Telegraf captures syslog messages transmitted over various protocols such as TCP, UDP, and TLS. It supports both RFC 5424 (the newer syslog protocol) and the older RFC 3164 (BSD syslog protocol). This plugin operates as a service input, effectively starting a service that listens for incoming syslog messages. Unlike traditional plugins, service inputs may not function with standard interval settings or CLI options like --once
. It includes options for setting network configurations, socket permissions, message handling, and connection handling. Furthermore, the integration with Rsyslog allows forwarding of logging messages, making it a powerful tool for collecting and relaying system logs in real-time, thus seamlessly integrating into monitoring and logging systems.
Grafana
Telegraf can be used to send real-time data to Grafana using the Websocket output plugin. Metrics collected by Telegraf are instantly pushed to Grafana dashboards, enabling real-time visualization and analysis. This plugin is ideal for use cases where low latency, live data visualization is essential, such as operational monitoring, real-time analytics, and immediate incident response scenarios. It supports authentication headers, customizable data serialization formats (like JSON), and secure communication via TLS, offering flexibility and ease of integration in dynamic, interactive dashboard environments.
Configuration
Syslog
[[inputs.syslog]]
## Protocol, address and port to host the syslog receiver.
## If no host is specified, then localhost is used.
## If no port is specified, 6514 is used (RFC5425#section-4.1).
## ex: server = "tcp://localhost:6514"
## server = "udp://:6514"
## server = "unix:///var/run/telegraf-syslog.sock"
## When using tcp, consider using 'tcp4' or 'tcp6' to force the usage of IPv4
## or IPV6 respectively. There are cases, where when not specified, a system
## may force an IPv4 mapped IPv6 address.
server = "tcp://127.0.0.1:6514"
## Permission for unix sockets (only available on unix sockets)
## This setting may not be respected by some platforms. To safely restrict
## permissions it is recommended to place the socket into a previously
## created directory with the desired permissions.
## ex: socket_mode = "777"
# socket_mode = ""
## Maximum number of concurrent connections (only available on stream sockets like TCP)
## Zero means unlimited.
# max_connections = 0
## Read timeout (only available on stream sockets like TCP)
## Zero means unlimited.
# read_timeout = "0s"
## Optional TLS configuration (only available on stream sockets like TCP)
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Enables client authentication if set.
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Maximum socket buffer size (in bytes when no unit specified)
## For stream sockets, once the buffer fills up, the sender will start
## backing up. For datagram sockets, once the buffer fills up, metrics will
## start dropping. Defaults to the OS default.
# read_buffer_size = "64KiB"
## Period between keep alive probes (only applies to TCP sockets)
## Zero disables keep alive probes. Defaults to the OS configuration.
# keep_alive_period = "5m"
## Content encoding for message payloads
## Can be set to "gzip" for compressed payloads or "identity" for no encoding.
# content_encoding = "identity"
## Maximum size of decoded packet (in bytes when no unit specified)
# max_decompression_size = "500MB"
## Framing technique used for messages transport
## Available settings are:
## octet-counting -- see RFC5425#section-4.3.1 and RFC6587#section-3.4.1
## non-transparent -- see RFC6587#section-3.4.2
# framing = "octet-counting"
## The trailer to be expected in case of non-transparent framing (default = "LF").
## Must be one of "LF", or "NUL".
# trailer = "LF"
## Whether to parse in best effort mode or not (default = false).
## By default best effort parsing is off.
# best_effort = false
## The RFC standard to use for message parsing
## By default RFC5424 is used. RFC3164 only supports UDP transport (no streaming support)
## Must be one of "RFC5424", or "RFC3164".
# syslog_standard = "RFC5424"
## Character to prepend to SD-PARAMs (default = "_").
## A syslog message can contain multiple parameters and multiple identifiers within structured data section.
## Eg., [id1 name1="val1" name2="val2"][id2 name1="val1" nameA="valA"]
## For each combination a field is created.
## Its name is created concatenating identifier, sdparam_separator, and parameter name.
# sdparam_separator = "_"
Grafana
[[outputs.websocket]]
## Grafana Live WebSocket endpoint
url = "ws://localhost:3000/api/live/push/custom_id"
## Optional headers for authentication
# [outputs.websocket.headers]
# Authorization = "Bearer YOUR_GRAFANA_API_TOKEN"
## Data format to send metrics
data_format = "influx"
## Timeouts (make sure read_timeout is larger than server ping interval or set to zero).
# connect_timeout = "30s"
# write_timeout = "30s"
# read_timeout = "30s"
## Optionally turn on using text data frames (binary by default).
# use_text_frames = false
## TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Syslog
-
Centralized Log Management: Use the Syslog plugin to aggregate log messages from multiple servers into a central logging system. This setup can help in monitoring overall system health, troubleshooting issues effectively, and maintaining audit trails by collecting syslog data from different sources.
-
Real-Time Alerting: Integrate the Syslog plugin with alerting tools to trigger real-time notifications when specific log patterns or errors are detected. For example, if a critical system error appears in the logs, an alert can be sent to the operations team, minimizing downtime and performing proactive maintenance.
-
Security Monitoring: Leverage the Syslog plugin for security monitoring by capturing logs from firewalls, intrusion detection systems, and other security devices. This logging capability enhances security visibility and helps in investigating potentially malicious activities by analyzing the captured syslog data.
-
Application Performance Tracking: Utilize the Syslog plugin to monitor application performance by collecting logs from various applications. This integration helps in analyzing the application’s behavior and performance trends, thus aiding in optimizing application processes and ensuring smoother operation.
Grafana
-
Real-Time Infrastructure Dashboards: Deploy Telegraf to stream server health metrics directly to Grafana dashboards, enabling IT teams to visualize infrastructure performance in real-time. This setup allows immediate detection and response to critical system events.
-
Interactive IoT Monitoring: Integrate IoT device metrics collected by Telegraf and push live data into Grafana, creating dynamic and interactive dashboards for monitoring smart city projects or manufacturing processes. This real-time visibility significantly enhances responsiveness and operational efficiency.
-
Instantaneous Application Performance Analysis: Stream application metrics in real-time from production environments into Grafana dashboards, enabling development teams to rapidly detect and diagnose performance bottlenecks or anomalies during deployments, minimizing downtime and improving reliability.
-
Live Event Analytics: Utilize Telegraf to capture and stream real-time audience or system metrics during major live events directly into Grafana dashboards. Event organizers can dynamically monitor and react to changing conditions or trends, significantly enhancing audience engagement and operational decision-making.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration