NATS and PostgreSQL Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The NATS Consumer Input Plugin enables real-time data consumption from NATS messaging subjects, integrating seamlessly into the Telegraf data pipeline for monitoring and metrics gathering.
The Telegraf PostgreSQL plugin allows you to efficiently write metrics to a PostgreSQL database while automatically managing the database schema.
Integration details
NATS
The NATS Consumer Plugin allows Telegraf to read metrics from specified NATS subjects and create metrics based on supported input data formats. Utilizing a Queue Group allows multiple instances of Telegraf to read from a NATS cluster in parallel, enhancing throughput and reliability. This plugin also supports various authentication methods, including username/password, NATS credentials files, and nkey seed files, ensuring secure communication with the NATS servers. It is particularly useful in environments where data persistence and message reliability are critical, thanks to features such as JetStream that facilitate the consumption of historical messages. Additionally, the ability to configure various operational parameters makes this plugin suitable for high-throughput scenarios while maintaining performance integrity.
PostgreSQL
This plugin writes metrics to PostgreSQL (or a compatible database) and manages the schema, automatically updating missing columns.
Configuration
NATS
[[inputs.nats_consumer]]
## urls of NATS servers
servers = ["nats://localhost:4222"]
## subject(s) to consume
## If you use jetstream you need to set the subjects
## in jetstream_subjects
subjects = ["telegraf"]
## jetstream subjects
## jetstream is a streaming technology inside of nats.
## With jetstream the nats-server persists messages and
## a consumer can consume historical messages. This is
## useful when telegraf needs to restart it don't miss a
## message. You need to configure the nats-server.
## https://docs.nats.io/nats-concepts/jetstream.
jetstream_subjects = ["js_telegraf"]
## name a queue group
queue_group = "telegraf_consumers"
## Optional authentication with username and password credentials
# username = ""
# password = ""
## Optional authentication with NATS credentials file (NATS 2.0)
# credentials = "/etc/telegraf/nats.creds"
## Optional authentication with nkey seed file (NATS 2.0)
# nkey_seed = "/etc/telegraf/seed.txt"
## Use Transport Layer Security
# secure = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Sets the limits for pending msgs and bytes for each subscription
## These shouldn't need to be adjusted except in very high throughput scenarios
# pending_message_limit = 65536
# pending_bytes_limit = 67108864
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
PostgreSQL
# Publishes metrics to a postgresql database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://www.postgresql.org/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
## containing fields for which there is no column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
## unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
## controls the maximum backoff duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
## This is an optimization to skip inserting known tag IDs.
## Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
Input and output integration examples
NATS
-
Real-Time Analytics Dashboard: Utilize the NATS plugin to gather metrics from various NATS subjects in real time and feed them into a centralized analytics dashboard. This setup allows for immediate visibility into live application performance, enabling teams to react swiftly to operational issues or performance degradation.
-
Distributed System Monitoring: Deploy multiple instances of Telegraf configured with the NATS plugin across a distributed architecture. This approach allows teams to aggregate metrics from various microservices efficiently, providing a holistic view of system health and performance while ensuring no messages are dropped during transmission.
-
Historical Message Recovery: Leverage the capabilities of NATS JetStream along with this plugin to recover and process historical messages after Telegraf has been restarted. This feature is particularly beneficial for applications that require high reliability, ensuring that no critical metrics are lost even in case of service disruptions.
-
Dynamic Load Balancing: Implement a dynamic load balancing scenario where Telegraf instances consume messages from a NATS cluster based on load. Adjust the queue group settings to control the number of active consumers, allowing for better resource utilization and performance scaling as demand fluctuations occur.
PostgreSQL
-
Monitoring Database Performance: You can use this plugin to regularly send metrics on PostgreSQL performance such as active connections, query performance, and resource usage, allowing for better monitoring and optimization of your database.
-
Integrating with TimescaleDB: If you’re using TimescaleDB for time-series data storage, this plugin can help you write metrics directly into a hypertable. This allows you to benefit from TimescaleDB’s advanced time-series capabilities while leveraging standard PostgreSQL features.
-
Data Archiving: Create a long-term data archiving solution where you can push metrics into PostgreSQL for historical analysis. The plugin’s support for JSONB allows you to store complex data structures directly into a single column, making retrieval efficient.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration