LDAP and Grafana Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The LDAP plugin collects monitoring metrics from LDAP servers, including OpenLDAP and 389 Directory Server. This plugin is essential for tracking the performance and health of LDAP services, enabling administrators to gain insights into their directory operations.
This plugin enables Telegraf to stream metrics directly to Grafana dashboards in real-time, leveraging Grafana Live for instantaneous data visualization and operational insights.
Integration details
LDAP
This plugin gathers metrics from LDAP servers’ monitoring backend, specifically from the cn=Monitor
entries. It supports two prominent LDAP implementations: OpenLDAP and 389 Directory Server (389ds). With a focus on collecting various operational metrics, the LDAP plugin enables administrators to monitor performance, connection status, and server health in real-time, which is vital for maintaining robust directory services. By allowing customizable connection parameters and security configurations, such as TLS support, the plugin ensures compliance with best practices for security and performance. Metrics gathered can be instrumental in identifying trends, optimizing server configurations, and enforcing service-level agreements with stakeholders.
Grafana
Telegraf can be used to send real-time data to Grafana using the Websocket output plugin. Metrics collected by Telegraf are instantly pushed to Grafana dashboards, enabling real-time visualization and analysis. This plugin is ideal for use cases where low latency, live data visualization is essential, such as operational monitoring, real-time analytics, and immediate incident response scenarios. It supports authentication headers, customizable data serialization formats (like JSON), and secure communication via TLS, offering flexibility and ease of integration in dynamic, interactive dashboard environments.
Configuration
LDAP
[[inputs.ldap]]
## Server to monitor
## The scheme determines the mode to use for connection with
## ldap://... -- unencrypted (non-TLS) connection
## ldaps://... -- TLS connection
## starttls://... -- StartTLS connection
## If no port is given, the default ports, 389 for ldap and starttls and
## 636 for ldaps, are used.
server = "ldap://localhost"
## Server dialect, can be "openldap" or "389ds"
# dialect = "openldap"
# DN and password to bind with
## If bind_dn is empty an anonymous bind is performed.
bind_dn = ""
bind_password = ""
## Reverse the field names constructed from the monitoring DN
# reverse_field_names = false
## Optional TLS Config
## Set to true/false to enforce TLS being enabled/disabled. If not set,
## enable TLS only if any of the other options are specified.
# tls_enable =
## Trusted root certificates for server
# tls_ca = "/path/to/cafile"
## Used for TLS client certificate authentication
# tls_cert = "/path/to/certfile"
## Used for TLS client certificate authentication
# tls_key = "/path/to/keyfile"
## Password for the key file if it is encrypted
# tls_key_pwd = ""
## Send the specified TLS server name via SNI
# tls_server_name = "kubernetes.example.com"
## Minimal TLS version to accept by the client
# tls_min_version = "TLS12"
## List of ciphers to accept, by default all secure ciphers will be accepted
## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
## Use "all", "secure" and "insecure" to add all support ciphers, secure
## suites or insecure suites respectively.
# tls_cipher_suites = ["secure"]
## Renegotiation method, "never", "once" or "freely"
# tls_renegotiation_method = "never"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Grafana
[[outputs.websocket]]
## Grafana Live WebSocket endpoint
url = "ws://localhost:3000/api/live/push/custom_id"
## Optional headers for authentication
# [outputs.websocket.headers]
# Authorization = "Bearer YOUR_GRAFANA_API_TOKEN"
## Data format to send metrics
data_format = "influx"
## Timeouts (make sure read_timeout is larger than server ping interval or set to zero).
# connect_timeout = "30s"
# write_timeout = "30s"
# read_timeout = "30s"
## Optionally turn on using text data frames (binary by default).
# use_text_frames = false
## TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
Input and output integration examples
LDAP
-
Monitoring Directory Performance: Use the LDAP Telegraf plugin to continuously track and analyze the number of operations completed, initiated connections, and server response times. By visualizing this data over time, administrators can identify performance bottlenecks in directory services, enabling proactive optimization.
-
Alerting on Security Events: Integrate the plugin with an alerting system to notify administrators when certain metrics, such as
bind_security_errors
orunauth_binds
, exceed predefined thresholds. This setup can enhance security monitoring by providing real-time insights into potential unauthorized access attempts. -
Capacity Planning: Leverage the metrics collected by the LDAP plugin to perform capacity planning. Analyze connection trends, maximum threads in use, and operational statistics to forecast future resource needs, ensuring the LDAP server can handle expected peak loads without degrading performance.
-
Compliance and Auditing: Use the operational metrics obtained via this plugin to assist in compliance audits. By regularly checking metrics like
anonymous_binds
andsecurity_errors
, organizations can ensure that their directory services adhere to security policies and regulatory requirements.
Grafana
-
Real-Time Infrastructure Dashboards: Deploy Telegraf to stream server health metrics directly to Grafana dashboards, enabling IT teams to visualize infrastructure performance in real-time. This setup allows immediate detection and response to critical system events.
-
Interactive IoT Monitoring: Integrate IoT device metrics collected by Telegraf and push live data into Grafana, creating dynamic and interactive dashboards for monitoring smart city projects or manufacturing processes. This real-time visibility significantly enhances responsiveness and operational efficiency.
-
Instantaneous Application Performance Analysis: Stream application metrics in real-time from production environments into Grafana dashboards, enabling development teams to rapidly detect and diagnose performance bottlenecks or anomalies during deployments, minimizing downtime and improving reliability.
-
Live Event Analytics: Utilize Telegraf to capture and stream real-time audience or system metrics during major live events directly into Grafana dashboards. Event organizers can dynamically monitor and react to changing conditions or trends, significantly enhancing audience engagement and operational decision-making.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration